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Preface 
Program model checking is a verification technology that uses state-space exploration to 
evaluate large numbers of potential program executions. It can be effective at detecting 
critical software errors that are difficult to find through traditional testing. Program 
model checking provides improved coverage over testing by systematically evaluating 
all possible test inputs and all possible interleavings of threads in a multithreaded 
system. 

In the real world, “all possible” can be a very big number. To address this challenge, 
model-checking algorithms use several classes of optimizations to reduce the time and 
memory requirements for analysis, as well as heuristics for meaningful analysis of 
partial areas of the state space. This is still not always sufficient to enable exhaustive 
coverage. However, even with only partial coverage of a system, the ability to control 
thread scheduling and environment responses while monitoring the system state offers 
benefits over testing for finding requirements violations. 

Program model checking evolved into an active research area at the end of the 1990s. 
After nearly a decade of investigations and case studies, best practices for applying 
program model checking are now emerging from various methods for capturing 
properties, building special-purpose test drivers, and modifying and abstracting 
application code. In addition, the effect of design practice on verifiability—including 
model checking—is being explored. Our goal in this guidebook is to assemble, distill, 
and demonstrate these emerging best practices for applying program model checking. 
We offer it as a starting point and introduction for those who want to apply model 
checking to software verification and validation. The guidebook will not discuss any 
specific tool in great detail, but we provide references for specific tools. 

Specific technical areas we will address are: 

 Eliciting and formalizing critical requirements and design properties to be verified 
using model checking 

 Using the project requirements to identify critical subsystems as the focus for model 
checking 

 Developing models of the existing hardware and software environment, including 
abstracted implementations for libraries used by applications, to use as test drivers 
during model checking 

 Redesigning system elements that are difficult to test or model check 

 Using heuristics to improve the effectiveness of verification 

 Measuring and monitoring state-space coverage and model fidelity 

 Evaluating counterexamples and spurious errors 

 Using model checking to automate test case generation 

xi 
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1 Introduction 

1.1 What is Model Checking? 
Model checking is a collection of techniques for analyzing an abstract representation of a 
system to determine the validity of one or more properties of interest. More specifically, 
it has been defined as an algorithmic formal verification technique for finite-state, concurrent 
systems (Clarke, Emerson, and Sistla 1986; Queille and Sifakis 1982; NASA 2004). 

A concurrent system can be modeled by a finite-state machine represented as a directed 
graph consisting of: 

 nodes, which represent the states of the system, and 

 edges, which represent transitions between states 

In theory, a model checker can exhaustively search the entire state space of the system 
and verify whether certain properties are satisfied. A property is a predicate on a system 
state or states, and is usually expressed as a logical specification such as a propositional 
temporal logic formula. If the system satisfies the property, the model checker typically 
generates a confirmation response; otherwise, it produces a trace (also called a 
counterexample) which shows the violation of the property and the major events leading 
to that violation. Therefore, the model checker can be used both to prove correctness of 
the system behavior and to find bugs in the system. 

1.2 Hardware vs. Software Model Checking 
Model checking can be applied to both hardware and software. In fact, at the system 
level it can be applied to both at the same time. The Intel Pentium bug in 1994 was the 
“disaster” that inspired the hardware industry to pursue formal verification of hardware 
designs by trying new techniques such as model checking, with the goal of preventing 
such expensive mistakes in the future. Since that time, model checking has been used 
extensively in the industry for hardware verification. 

Model checking can also be applied to software systems at different stages of the 
development lifecycle. Used early in the lifecycle, it can analyze software requirements 
specifications (e.g., Holzmann 1990; Atlee and Gannon 1993; Chan et al. 1998; Chan et al. 
1999; Heitmeyer et al. 1998) and software design models (e.g., Allen, Garlan, and Ivers 
1998; Dang and Kemmerer 1999; Holzmann 1997). This can work well because these 
models can be both interesting and small enough to avoid model checking’s 
performance limitations. Early use of model checking is effective since many safety-
critical software defects are introduced early in the lifecycle (Lutz et al. 1998) and are 
expensive to correct later. 

1 
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While early lifecycle analysis has its clear benefits, some software errors cannot be 
discovered in the requirements and design stages. Sometimes the details of the system 
are not sufficiently elaborated to reveal problems until implementation. Also, many 
errors are introduced during implementation. 

NASA has encountered a number of software problems that were traced to 
implementation issues. For example, in 1999 the Mars Polar Lander (MPL) was lost 
during its final descent to the Martian surface at an estimated cost of $165 million. The 
most likely cause of failure was identified as a software-related problem—a single bad 
line of code. A variable that was not re-initialized after a spurious sensor signal 
associated with the craft’s legs falsely indicated that the craft had touched down when in 
fact it was some 130 feet above the surface. This caused the descent engines to shut 
down prematurely; MPL was destroyed in the subsequent impact. 

Such errors result from software becoming a pervasive component of aerospace systems. 
There are similar trends in other industries, such as the growing use of Integrated 
Modular Avionics (IMA) in civil aviation, which allows applications of varying 
criticality levels to execute on a shared computing platform. The increased scope and 
complexity of software naturally make it more difficult to design and validate. This 
suggests that changes need to be made in how aerospace systems are verified and 
validated (Rushby 1999). 

In contrast to hardware model checking, the use of model checking for program 
verification has been restricted mostly to the research community. There are good 
reasons why this has been the case, and we will discuss these in this guidebook. 

1.3 What is Program Model Checking? 
Program model checking refers to the application of model-checking techniques to 
software systems, and in particular to the final implementation where the code itself is 
the target of the analysis (Figure 1). It can be effective at uncovering critical software 
defects that are hard to find using approaches such as traditional testing. 

2 
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In the remainder of this guidebook we will use the term model checking to mean program 
model checking, unless otherwise stated. 

1.4 Advantages of Model Checking 
Many tools already exist to help detect problems in source code. Testing is clearly the 
most widely used technique and there are a variety of tools which support test data 
selection, test case management, test result checking, and test coverage assessment 
(Bezier 1990; Kaner, Falk, and Nguyen 1993). A growing number of static analysis tools 
can also evaluate source code for defects without actually executing the code. The 
capabilities of these tools range from checking simple coding conventions to detecting 
issues such as non-initialized variables, null pointer dereferences, and array out-of-
bounds errors (Coverity; FindBugs; GrammaTech’s CodeSonar; Klocwork; Parasoft’s 
C++Test and JTest; Polyspace; Evans 1996; Dor, Rodeh, and Sagiv 1998). 

For model checking to be useful in practice, it must provide clear benefits over other 
techniques such as testing and static analysis, either by finding more or different types 
of errors or by reducing cost. 

One area where model checking shows benefits is in concurrent (multithreaded) 
systems. Testing concurrent systems is problematic because the tester has little control 
over thread scheduling, and concurrency errors are notoriously irreproducible (Yang, 
Souter, and Pollock 1998; Hwang, Tai, and Hunag, 1995). Static analysis has had better 
success dealing with concurrency, but it can be challenging to obtain accurate results 
(Naumovich, Avrunin, and Clarke 1999). 
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Model checking overcomes the two limitations of testing by providing control over the 
order of thread scheduling and error traces to make test results repeatable. By controlling 
thread scheduling, the model checker can evaluate any—and sometimes every—possible 
interleaving of threads in the system. 

Another area where model checking can help is in the development of test cases. In 
addition to controlling thread scheduling, the model checker controls the test 
environment where the test data originates. Without any guidance, a model checker will 
naively try to generate all combinations of environmental behaviors as the closed 
application + environment system is checked. While in practice it is not possible to 
exhaust all possible input combinations, this ideal provides a comprehensive starting 
point to some new and interesting heuristics for generating test sets. In addition, because 
the tool itself generates the combinations of inputs, model-checking tools provide some 
nice techniques for building concise specifications of possible test data values. A model 
checker can provide much better coverage of the program because it can exhaustively 
and systematically look at all the possible behaviors rather than selected behaviors 
chosen (sometimes randomly) by QA personnel. 

Even when using the more traditional techniques to come up with a comprehensive set 
of test cases independently, there still remain the issues of performance and limited 
system resources available to apply those test cases. Model checkers employ various 
techniques for backtracking and efficient storage of visited states to avoid revisiting the 
previously checked portions of the state space. This allows them to be much more 
efficient with respect to precious resources such as memory and time. It also allows 
them to provide a trace that records all the significant events along the execution path 
that lead to an erroneous condition, showing not only what the error was but also how it 
occurred. 

Unlike other available techniques, a model checker can perform these tasks 
automatically for the most part, if the system is finite-state. Many interesting properties 
can be verified by a model checker out of the box without requiring much specific 
domain knowledge or expertise. (Specification of application-specific properties, of 
course, requires domain expertise.) 

It is this exhaustive, systematic, efficient, and automated nature of model checking that 
makes it attractive for those involved in software verification and validation, and can 
offer higher levels of assurance compared to other currently available techniques. 

1.5 Model-Checking Challenges 
As described before, a model checker typically examines all the possible states and 
execution paths in a systematic and exhaustive manner in order to check if one or more 
properties hold. That’s how it works in theory. But in practice and for realistic systems, 
“all the possible states and execution paths” can be such a large number that the model 
checker runs out of essential system resources such as memory before it can complete its 
task. In fact, in the worst case, the number of states increases exponentially with every 
variable or thread added to the system. This state space explosion problem has been the 
target of a great deal of research. 

4 
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1.6 Objectives of this Guidebook  
The state space explosion problem is a fundamental problem that cannot be removed—it 
can only be managed. One way to manage state space explosion is to abstract large or 
complex systems in some way. For example: 

 Variables which are “irrelevant” with respect to a certain property can be removed 
before model checking, or 

 Certain combinations of inputs or events can be ignored. 

Determining what is relevant and what is not can be difficult: If you throw out too 
much, your model can’t distinguish errors from valid runs, but if you leave in too much, 
the model checker may run out of memory before finding any errors. 

There are other ways to manage the state space explosion problem. Among the most 
successful approaches are approximation, the use of appropriate search strategies (e.g., 
bounded and guided searches), and partial coverage, techniques which have opened the 
door to tackling large problem spaces efficiently. The decision as to which one of them—
or what combination of them—to use in practice is not easy. 

That is where this guidebook comes in. Our goal is to help you walk the line between 
model fidelity and tractability, and to learn something about your real programs. 

The next chapter, “Programs, Properties and Models,” covers the basics of applying 
model checking to programs. The remaining chapters focus on different approaches to 
getting useful results from model checking while not getting caught in a state space 
explosion. All of these chapters use real examples from real software systems to which 
we have applied model checking. 

  “Test Drivers and Environment Models” looks at the central role that the model of 
the system environment plays in determining the size of the state space and validity 
of the results, and introduces techniques for building effective environment models. 

 “Program Abstraction” describes how we can safely (and sometimes not so safely) 
reduce the number of states of the system under test. 

 Sometimes it is easier to leave the model alone and instead use “Search and Partial 
Coverage” techniques to explore the model. 

 In “Program Design Guidelines for Model Checking,” we present some design and 
coding guidelines based on our experience. 

 “Model Checkers” presents a few important model-checking systems. 

 “Automated Testing”  discusses approaches to black-box and white-box testing that 
combine symbolic execution and model checking techniques. 

 The final chapter, “Case Studies,” briefly describes several NASA-relevant case 
studies. 

We have included two appendices with sample code: “An Example of a Primitive Type 
Abstraction in C++,” and “Example Implementation of Minimal C++ PbC 
Infrastructure.” The document concludes with a list of acronyms and abbreviations, a 
glossary, and bibliographic references. 
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2 Programs, Properties, and Models 

2.1 Models 
Building an accurate model of the system is a major and critical step in program model 
checking. You need to create models of both the application to be model checked and the 
environment in which it is run, including all the input data and event stimuli. In this 
chapter we mostly concentrate on modeling the target application. Environment 
modeling is covered separately in Chapter 3. 

So what are the characteristics of a good model? A model must include the most 
relevant information needed for determining whether the program properties being 
investigated hold in the target application. 

Parts of the system that do not affect the outcome of the property verification can be 
excluded from the modeling phase. The dangers of getting the model wrong are 
obvious. If you exclude or abstract too much, you may get false positives or false 
negatives. If you leave in too much, the model checker spends most of its time checking 
unnecessary code, wasting precious time and memory. 

There are several different approaches you can take to obtaining a model of the system. 
They are, in increasing order of preference: 

 Manual model construction 

 Model extraction 

 The program as the model 

2.1.1 Model Construction 

The initial research projects which applied model checking to real source code built 
models by hand based on relatively small parts of programs (Penix et al. 2000; Havelund, 
Lowry, and Penix 2001). This was a lot of work. 

Manual model construction is time consuming and error prone. It is often difficult to get 
the models right. It requires domain expertise to know what to include and what to 
leave out. Chapter 5 of (Holzmann 2004) gives some hints, including avoidance of sinks, 
sources, filters, and counters. Counters are described in section 6.2.5 of this guidebook. 

2.1.2 Model Extraction 

Several program model checkers are based on automated model extraction, where the 
program is translated into the input notation of an existing model checker (Corbett 1998; 
Havelund and Pressburger 2000; Corbett et al. 2000; Ball et al. 2001; Holzmann and Smith 
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2002). Bandera (Corbett et al. 2000) translates Java programs to a number of back-end 
model checkers, including SPIN (Holzmann 2004), dSPIN (dSPIN website), SMV (SMV 
website), Bogor (Robby, Dwyer, and Hatcliff 2003), and Java PathFinder (JPF) (JPF 
website). Bandera also supports abstraction by transforming the Java programs to 
“abstract” Java programs which are then translated. JCAT (JCAT website) translates Java 
to SPIN and dSPIN. FeaVer/Modex (FeaVer website, Modex website) translates C code 
to SPIN. SLAM (see section 7.9) translates C code to Boolean programs as input for the 
Bebop model checker. FeaVer and SLAM incorporate abstraction methods into the 
translation process. FeaVer’s abstraction is semi-automated, while SLAM uses predicate 
abstraction and abstraction refinement (Ball, Podelski, and Rajamani 2002) to automate 
abstraction during model checking. 

2.1.3 Programs as Models 

Program model checkers simply model check programs directly. They often adopt a 
modeling notation which is—or is close to—some popular implementation language 
such as C or Java (Visser et al. 2003; Stoller 2000; Musuvathi et al. 2002). The best possible 
scenario is when the language of the target program and the modeling notation are 
exactly the same. In this case, the program can be model checked almost directly without 
the need for constructing a separate model—the program itself is used as the model. 
This can reduce the cost of analysis by reducing the effort required to construct and 
maintain separate and explicit models. It also avoids the maintenance cost of trying to 
keep the models and the code consistent as the software is modified. 

In general, however, it’s not possible to avoid the construction of a separate model 
because of factors such as the mismatch between the modeling and target notations or 
the required level of detail in the model. It is often necessary to apply a combination of 
the techniques mentioned above to obtain a valid representation of the program to be 
analyzed. Parts of the system may be modeled manually, whereas other parts may lend 
themselves to direct translation. 

2.2 Model Checking a Program 
The operation of a model checker can be described in terms of the familiar metaphor of 
searching a graph (Figure 2). The nodes of the graph represent the states of the program 
and the links connecting the nodes represent state changes or transitions. Branch points in 
the graph represent choices resulting from, for example, scheduling decisions or 
different input values, which can produce multiple options as to the next state to be 
considered by the model checker. 

The state of a program can be described as the bindings of variables and data members 
to values, the value of the program counter representing the instruction being executed, 
and the information identifying the current thread of execution. 

The state of a program changes over time. The state graph represents the state space of 
the program as a whole—the collection of all possible program states and transitions. 
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Figure 2  State Graph 
 

A model checker essentially tries to cover every state in the state space and follow all the 
transitions, covering every state reachable by any execution path. 

Explicit state model checkers support a state storage mechanism which allows them to 
remember the previous states that they have visited. Once a leaf state or previously 
visited state has been reached, the model checker can backtrack and try the other choices 
that could have been taken instead. This allows the model checker to be systematic and 
thorough in covering the entire state space while checking the properties of interest. 

2.3 Properties 
A property is a precise condition that can be checked in a given state or across a number 
of states (for example, to describe behaviors in the case of temporal properties). It should 
specify what the condition must be, not how it is satisfied. 

The overall aim of model checking is to increase the quality of verification and 
validation (V&V) by specifying and checking properties that cover all of the application 
requirements. 

The best time to capture the properties is during each relevant phase of the software 
lifecycle (requirement, design, development, and testing) and not after the fact. 
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Whatever is known about the correctness and completeness of the application during 
each phase should be captured and preserved as additional information—ideally within, 
or closely associated with, the relevant artifacts—as the system is developed. This allows 
the designers, developers, and test personnel to be aware of all the properties and the 
related requirements. 

Unfortunately, in practice such properties are often “reverse engineered” during the 
V&V process. 

2.3.1 Types of Properties 

Properties can be categorized along several dimensions, as described in the following 
subsections. 

2.3.1.1 Generic vs. Application-Specific Properties 

Properties can be generic or application specific. Examples of generic properties are: 

 No array out-of-bounds accesses 

 No divide by zeros 

 No deadlocks 

 No race conditions 

 No null-pointer dereferences 

 No uncaught exceptions 

Application-specific properties are assertions about particular features or behaviors that 
depend on the nature of the application and typically involve domain-specific terms. For 
example: 

 “The pitch rate ratio shall be between 0 and 1.” 

 “The busy flag shall be set if the input is not available for five consecutive cycles.” 

2.3.1.2 Safety Properties 

A safety property asserts that nothing bad will happen during the execution of the 
program (e.g., no deadlocks, or no attempts to take an item from an empty buffer). 

Safety properties are used mainly to ensure consistency of the program state, for 
example by making sure that: 

 Shared resources are updated atomically (mutual exclusion), or 

 The state of shared resources is kept consistent by delaying certain operations 
(condition synchronization) 

10 



  Programs, Properties, and Models  

 
2.3.1.3 Liveness Properties 

A liveness property asserts that something good eventually happens, and is used mainly 
to ensure progress. Liveness properties prevent: 

 starvation: Processes not getting the resources they need (e.g., CPU time, locks) 

 dormancy: Waiting processes fail to be awakened 

 premature termination: Processes killed before they are supposed to be 

In general, liveness properties are harder to detect than safety properties. 

2.3.1.4 Fairness Properties 

A fairness property is essentially a liveness property which holds that something good 
happens infinitely often (for example, a process activated infinitely often during an 
application execution—each process getting a fair turn). 

2.3.1.5 Temporal Properties 

Properties that hold for a state in isolation are called state properties. Temporal (or path) 
properties relate state properties of distinct states in the state space to each other. Such 
properties are also referred to as dynamic properties. Temporal properties can be 
expressed as statements about the relation of different state properties along possible 
execution paths. For example, a temporal property can state that all paths which contain 
a send signal emitted at one state will also contain a later state where the signal has been 
received. 

2.3.2 Identifying and Eliciting Critical Properties 

Identification and elicitation of critical properties is the initial and essential step in the 
verification process; however, there is no well-defined and generally accepted process to 
follow. 

For our SAFM case study in section 9.4 we used a combination of approaches in an 
attempt to be thorough and to understand which approaches were most useful. To do 
this effectively, we collaborated closely with the SAFM domain experts to identify the 
set of properties for model checking. Working closely with those who had intimate 
knowledge of the requirements, design, code, and existing testing infrastructure saved a 
lot of time and effort. 

We then classified those properties in terms of their criticality and importance as well as 
their general applicability (generic properties such as “no divide by zeros” or “no 
overflows/underflows”) versus their specific relevance to SAFM (application-specific 
properties; for example, “the value of the time step shall be between the values … and 
…”). 

Generic properties can be formulated and understood by those who do not have any 
application-specific domain knowledge. Model checkers such as SPIN and Java 
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PathFinder are able to detect violations of many such properties by default or by the 
user setting one or more configuration options. 

In contrast, specifying application-specific properties is more challenging. As their name 
suggests, they often require intimate understanding of the system under analysis. 
Therefore this information is best formulated and captured by or in close collaboration 
with the original requirements engineers, designers, and developers who have such 
domain-specific knowledge. 

Even with intimate knowledge of the system, the process of identifying the properties of 
interest is usually not straightforward. These properties must make sense and be the 
right ones to use for verification of the system. You may also need to further constrain a 
property or widen its applicability. They must be specified, developed, validated, and 
verified in the same way as any other software artifact. 

In order to do this and also to get an assessment of the coverage of those properties 
using the existing testing framework, we encoded those properties and instrumented the 
code using AspectC++ (described in section 2.3.4.2) and ran the existing tests using 
SAFM’s existing test driver. We showed the results of our findings (including violations 
of the supposed properties) to the customers, and through an iterative process adjusted 
the properties until we were satisfied that we had come up with a set of valid properties 
for our model-checking work. 

2.3.3 Specifying Properties 

Different tools use different notations for specifying properties. In this section we 
describe some of the techniques. 

2.3.3.1 Property Specification in Java PathFinder 

In Java PathFinder, properties are specified in Java. JPF can check a number of 
properties out of the box: 

 No Deadlocks 

 No Assertion Violation 

 No Uncaught Exceptions (i.e., no exceptions that are not handled inside the 
application) 

 No Race conditions 

For assertion violations, you must add Java assert statements to the source code. Java 
PathFinder then reports when those assertions are not satisfied. For other types of 
default properties, no special annotations are necessary. All that is needed is that they 
are activated through configuration options. 

JPF also allows you to add new properties through a well-defined interface. This 
interface lets you access not only the state of the program under analysis but also the 
state of the model checker itself. 
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The same interface can also be used to implement temporal properties, but it is your 
responsibility to write the code (e.g., an automaton) to keep track of successive states 
used to verify the property. 

All the properties can be activated and deactivated as required through configuration 
options. 

2.3.3.2 Property Specification in SPIN 

SPIN allows specification of assertions, which check a predicate of a state at a point in an 
execution, and also allows for specification of progress properties (e.g., no starvation) by 
allowing statements to be labeled as progress states. A report is generated if there are 
infinite executions that do not pass through one of these marked states. SPIN also 
provides a facility for stating never claims, behavior that should never occur. Never 
claims are checked at each step in the execution. This allows you to state an invariant 
(which may even be a path property) that should never be violated. You can specify 
temporal properties using a timeline editor.  

Linear Temporal Logic (LTL) is a language to express properties that hold for paths 
throughout the state space. The SPIN model checker allows temporal properties to be 
expressed in this language; the properties are then compiled into never claims. Formulas 
in LTL are built of state properties and the following operators: [] (always), <> 
(eventually), and U (until), plus the standard logical operators. The semantics is as 
follows: 

 P: The property P holds in the current state. 

 []P: The property P holds in this state and in all future states. 

 <>P: The property P eventually holds in this or a future state. 

 P U Q: The property P holds in this state and future states until a state is reached 
where the property Q holds. 

The send/receive temporal property mentioned in section 2.3.1.5 can be expressed in 
LTL as  

[](Send => <> Receive) 
 

where => is logical implication. Some simple properties can be elegantly expressed in 
LTL; however, many desirable properties become quite complex expressions.  

SPIN provides the trace assertion facility to formalize statements about valid or invalid 
sequences of operations that processes perform on message channels. SPIN message 
channels are discussed in section 7.2. 

2.3.3.3 Property Patterns 

One important obstacle to using temporal logic is the difficulty of expressing complex 
properties correctly. Dwyer and his colleagues have proposed a pattern-based approach 
to the presentation, codification, and reuse of property specifications for finite-state 
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verification (Dwyer, Avrunin, and Corbett 1998; Dwyer, Avrunin, and Corbett 1999) and 
(Spec Patterns website). 

The patterns enable non-experts to read and write formal specifications for realistic 
systems (including reactive systems) and facilitate easy conversion of specifications 
between different formalisms. 

The system allows patterns like “P is absent between Q and S” or “S precedes P between 
Q and R” to be easily expressed in and translated between Linear Temporal Logic (LTL) 
(Manna and Pnueli 1990), Computation Tree Logic (CTL) (Clarke et al. 1986), Quantified 
Regular Expressions (QRE) (Olender and Osterweil 1990), and other state-based and 
event-based formalisms. (Dwyer, Avrunin, and Corbett 1999) also performed a large-
scale study in which specifications containing over 500 temporal properties were 
collected and analyzed. They noticed that over 90% of these could be classified under 
one of the proposed patterns. 

2.3.4 Inserting Property Oracles 

A property oracle is a program or a piece of code that says whether or not a property 
holds during model checking. The process of inserting this (often conditionally compiled 
code) in the program is called instrumentation. 

While non-functional properties like deadlocks and memory leaks do not have to be 
expressed explicitly in the program sources, functional properties, describing 
application-specific functionality like state consistency and correctness of computations, 
needs explicit instrumentation. 

For program model checking, this instrumentation takes the form of annotations and 
code extensions which are inserted in the source. You must be careful about where these 
are inserted. Do not insert them in the code at intermediate states where the property is 
not expected to hold, only where the program is in a consistent state. We call these 
places checkpoints. For example, the code for calculating some time interval value may 
span multiple statements. The checkpoints for verifying that the value is within some 
predefined range can be before the first and after the final statement involved in that 
calculation. Checking the code at any other point in between may lead to false positives 
or negatives, as the check may be using intermediate values. 

You can use the requirements, the verification and validation matrix, the existing design 
models (if any), and the expertise of those with domain knowledge to identify these 
checkpoints. In the case of SAFM, for some properties we had to get confirmation from 
the domain experts to make sure that we were inserting our instrumentation at the right 
places. 

There are different techniques for inserting property oracles into programs. Two of these 
mechanisms discussed here are Programming by Contract and Aspect-Oriented 
Programming. Note that these are complementary techniques, and may be used in 
combination. 
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2.3.4.1 Programming by Contract 

The major mechanism for expressing functional properties is the use of assertions—
statements involving conditions expressed as Boolean expressions which cause program 
termination if the condition is not met. 

 

 

#include "assert.h"
... 
assert((x > 10) && (y < 50));

 
Assertions are usually conditionally compiled, and therefore they should be 
programmed side-effect-free with respect to object states. For C/C++, this is 
implemented by means of the pre-processor, not integrated into the language. It works 
well for “flat” procedural programs, but has limitations with object-oriented 
programming (OOP), as discussed later. 

The preferred way to integrate assertions into an object-oriented system is through 
Programming by Contract (PbC) (Meyer 1992). PbC extends and provides specialized 
assertions by defining standard scopes and evaluation rules for them, especially in the 
context of object-oriented programming. The following assertion types are part of PbC: 

 Pre-condition: An assertion checked before a function/method body is executed. 

 Post-condition: An assertion checked before a function/method exits, including 
exception control flow. 

 Loop invariant: An assertion that is true at the beginning of the loop and after each 
execution of the loop body. 

 Loop variant: An assertion that describes how the data in the loop condition is 
changed by the loop. It is used to check forward progress in the execution of loops to 
avoid infinite loops and other incorrect loop behavior. 

 Loop bounds: An assertion that checks that the loop can only be traversed a bounded 
number of times. 

 Class invariant: An assertion that is evaluated before and after each invocation of a 
public function and can be thought of as a way to factorize contracts. 

 Assertion: An assertion not attached to standard language constructs. 

The main purpose of contracts is to clearly define responsibilities between the supplier 
(the callee must fulfill post-conditions) and the consumer (the caller must fulfill pre-
conditions), and hence help to avoid errors that are caused by ambiguity. Compliance is 
tested with executable code that can be optionally compiled into the application. A 
typical example is to test parameter and return values for constraints: 
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class Foo { 
    //@ invariant: (v >= VMIN) && (v <= VMAX) 
 
    double v; 
 
    double accelerate (int t, int a) { 
        //@ requires:  (t > 0) && (a > 0) 
        //@ ensures:   (v > \old(v)) && (\result == v) 
 
        v = … 
        … 
        return … 
    } 
} 

 

Ideally, contracts should be inheritance aware—a call to a redefined function in a 
derived class should succeed if any of the pre-conditions are met (weakening), and upon 
return should ensure that all post-conditions hold (strengthening). 

The lack of properties that can be tested and used as input for formal methods has 
traditionally hampered the V&V process. In many cases, these properties are created 
after the development has been completed, leading to additional costs and missing 
regression test suites during development. Incorporating contracts into the sources even 
before functions are implemented ensures that: 

 Developers have a clear understanding of responsibilities (self-documenting 
sources), which is kept up to date throughout the development process. 

 Testers automatically get a set of potentially fine-grained testing conditions that are 
especially useful for creating unit tests and regression test suites. 

 External V&V does not have to “guess” functional properties later on. 

 V&V does not require subsequent instrumentation of sources for each new version, 
which normally has to be done manually. 

2.3.4.1.1 Support for Programming by Contract 

Programming by Contract can be supported on several levels, depending on the 
programming language and available third-party tools. 
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Direct support by language (e.g., Eiffel, Digital Mars C++) 

class FOO 
  feature 
    v : DOUBLE 
 
    accelerate (t, a : INTEGER) : DOUBLE is 
        require 
            positive_input: (t > 0) and (a > 0) 
        ensure 
            v_changed: (v /= old v) 
            result_consistent: (Result = v)   
        … 
        v := … 
 
        do 
            from  … 
            invariant … 
            variant … 
            until … 
            loop 
            … 
        end -- loop 
        … 
        Result := … 
    end -- accelerate 
 
  invariant 
    v_constraints: (v >= VMIN) and (v <= VMAX)              
end -- FOO 

 
While direct support by language provides the most powerful support for contracts 
(e.g., loop variants/invariants), it depends on languages or language extensions that are 
not mainstream, and therefore might not be suitable for all projects. 

The two statically typed (compiled), publicly available programming languages 
supporting PbC at this level are Eiffel (Eiffel Software) and D (Digital Mars). Both are 
contemporary object-oriented languages, implemented in proprietary and open source 
compilers, supporting several hardware architectures and operating systems. Eiffel 
provides deeper PbC support (e.g., loop variants and invariants), and loosely resembles 
Pascal/Ada in terms of declaration and expression syntax. D resembles C/C++, but is 
not yet widely used and is less mature than Eiffel. Both languages have established user 
and developer communities, but cannot be considered as mainstream as C++. 

While a PbC proposal exists for the upcoming C++0x standard (Abrahams et al. 2005), it 
is not yet clear if and when compiler vendors will support it. The syntax resembles D, in 
that it requires grammar extensions: 
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template< class T, class Alloc = allocator<T> > class vector {
  static invariant { 
    static is_assignable<T>::value : 
            "value_type must be Assignable" ; 
      ... 
  }   
  invariant { 
    size() <= capacity(); .. 
  } 
  void push_back( const T& val ) 
    precondition  { size() < max_size(); } 
    postcondition { back() == val;  
                    size() == __old size() + 1;  
                    capacity() >= __old capacity(); } 
  ... 
}; 

Embedded Languages in Magic Comments 

In this approach, contracts are specified using a separate notation that is embedded in 
comments, using special compilers to turn annotations into instrumentation. Two typical 
implementations of this category are SPARKAda and the Java Modeling Language 
(JML). 

SPARKAda (SPARKAda website) is an Ada95 subset with a rich set of annotations that 
exceeds runtime instrumentation. The SPARKAda tool suite includes extensive static 
analysis and proof checkers. 

 

 

package odometer 
--# own Trip, Total : Integer; 
is 
  procedure Inc; 
  -- # global in out Trip, Total; 
  -- # derives Trip from Trip & Total from Total; 
  -- # post Trip = Trip~ + 1 and Total = Total~ + 1; 
  … 
end Odometer; 

 
While SPARKAda is well documented, it is only available from a single commercial 
vendor. 

The Java Modeling Language (JML website) is an open source language extension for 
Java. It provides additional expressions that especially focus on avoiding side effects of 
contracts. 
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//@ requires x >= 0.0; 
//@ ensures 
//@   JMLDouble.approximatelyEqualTo(x, \result * \result, eps); 
 
public static double sqrt(double x) { 
/*...*/ 

} 

 
Using a contract language that is embedded in comments, but can easily access features 
of the relevant program scope, is almost as powerful as direct language support. The 
downside is that this approach usually requires a target language compiler re-
implementation (an Ada or Java compiler), which imposes a serious tool dependency. 

Approximation with available language and pre-processor features 

Since there is no language support for PbC in mainstream languages such as C++, this 
has to be modeled. Modeling PbC capabilities using existing language features avoids 
specific language and compiler issues, but can require significantly increased design and 
programming effort, especially when used with object-oriented programming language 
class hierarchies. The approach has an increased probability of introducing errors or 
inconsistencies in the contract implementation itself. 

The major issue for pre- and post-conditions is inheritance. In order to preserve 
semantics, a pre-condition in an overriding method should always be equal to or weaker 
(accept more) than the overridden method, and a post-condition should always be equal 
to or stronger (ensure more) than the overridden method. 

For example:  

 

class A { class B : public A {
  ...   ... 
  #ifdef DEBUG   #ifdef DEBUG 
  bool _pre_foo (...) const   bool _pre_foo (...) const { 
  {...}     return (/* new cond */) || 
  bool _post_foo (...) 
const 

           A::_pre_foo(...); 
  } 

  {...}  
  #endif   bool _post_foo (...) const { 
     return (/* new cond */) && 
  virtual void foo (...) {            A::_post_foo(...); 
    assert(_pre_foo(...));   } 
    ...   #endif 
    assert(_post_foo(...));  
  }   virtual void foo (...) { 
};     assert(_pre_foo(...)); 

    ... 
    assert(_post_foo(...)); 
  } 
}; 
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Without language support, if you try to make assertions based on the old and new 
states, you must store old states explicitly, either as data members or local variables. 
Since this has a negative impact on the state space, use old states carefully. 

Without tool support, invariants also have to be explicitly turned into pre- or post-
conditions. For example: 

 

 

class Double { 
  private: 
    double v; .. 
    double min, max; 
 
    bool invariant () const { return ((v>=min)&&(v<=max)); } 
 
    Double& operator+= (const Double& d) { 
      assert ((v!=NAN) && (d.v!=NAN) && invariant()); // precond 
      .. 
      assert ((v != NAN) && invariant()); // postcond 
      return *this; 
    } ... 
}; 

In the absence of direct data member access, class invariants only have to be checked on 
exit from non-const function members.  

In general, among the tasks that you need to consider are: 

 Creating dedicated invariant() member functions for classes 

 Ensuring that invariant checks are explicitly called in pre- and post-conditions 

 Ensuring that post-conditions are called upon each exit point of a function (which 
usually is done by enforcing a single exit point—a general coding best practice) 

 Ensuring that return expressions cannot violate post-conditions (for instance, with 
temporary objects) 

Within limits, you can mitigate these efforts by creating a dedicated infrastructure of 
functions and macros: 
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#include "pbc.h"  // defines macros
                  // CONTRACT_X, REQUIRES, ENSURES, RETURN  
 
double foo (double d) { 
  CONTRACT_RP( 
    double, foo,         // return type & function name 
    double, d,           // checked parameter type(s) & name(s)
    REQUIRES( d>0),          // preconditions 
    ENSURES( (d == _d) &&    // post-condition (‘_d’ refers 
             (result< 40.0)) // to the ‘d’ value upon  
  );                         // entry, ‘result’ is the 
                             // return value) 
  …      
  if (…) { 
       RETURN(bar(d));   // macro makes sure we support 
  } else {               // return value postconditions 
       RETURN(baz(d));   // even with multiple exit points 
  } 
} 

 
A C++ example implementation of such an infrastructure can be found in Appendix B. 

While this approach is the most pragmatic one, and works with existing compilers, it 
does not provide the same amount of support (especially with respect to sub-contracts in 
class hierarchies), and requires additional efforts to: 

 ensure that none of the PbC functions or macros are redefined; 

 configure desired assertion actions (error handlers); 

 avoid obfuscation of “normal” control flow and stack layout (debugging); and 

 provide inspection mechanisms to analyze the context of assertion violations. 

You can reduce the amount of redundant information between function header and 
contract definition (return type, class name, function name, etc.) by using more powerful 
external preprocessors, like the Unix M4 preprocessor. When choosing this approach, 
encapsulate non-C++ macros into comments, to ensure compatibility with existing tools 
(compilers, development environments, etc.). 

 

 

// PBC_FUNC(
double mod_ab(double in_a, … // 
) 
 
  PBC_PRE(in_a >=   0.0); 
  PBC_PRE(in_a <= 100.0); 
 
  PBC_POST(ret >=   0.0); 
  PBC_POST(ret <= 100.0); 

 

This syntax could be further improved by a specialized contract preprocessor, but such a 
tool is not yet available. 

An alternative is to use C++ multiple inheritance and template classes to implement 
contracts, and to encapsulate pre- and post-conditions and invariants in functor objects, 
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which can also be used to control contract side effects (e.g., Guerreiro 2001). This 
approach is safer than the use of macros, but requires considerably more C++ 
knowledge. It also uses C++ features which are more expensive in terms of model 
checking, such as multiple inheritance, templates, and extensive creation of temporary 
object clones. 

Even though the mainstream languages lack direct support of all of the PbC concepts, 
many of them either directly (e.g., Java) or indirectly (e.g., C++ through macros) support 
at least the specification of simple assertions. We highly encourage use of these 
assertions, as they provide one of the basic mechanisms for model checkers to detect 
defects. 

2.3.4.1.2 Other Uses of Programming by Contract 

Contracts can also be used for dynamic, temporal properties (Mehlitz and Penix 2005), 
which are especially useful to verify protocol compliance (for instance, requiring the test 
state to keep track of previous evaluations). However, this does not provide the 
documenting aspect of contracts, but rather uses them as a convenient instrumentation 
mechanism. 

There also have been attempts to use contracts as input for theorem provers (ACL, 
SPARKAda, Eiffel), but this usually requires additional language features and 
significantly more effort. 

2.3.4.2 Aspect-Oriented Programming 

Detection of certain program properties may involve instrumenting many entities such 
as classes and methods that are spread across the entire program—for example, 
detecting whether every connection open() call is followed by a connection close() 
call, or whether for all the classes that extend (or inherit from) a given base class the 
initialize() method is invoked within its constructor. A problem with detecting such 
properties is the amount of manual effort that is required to instrument the program. 
Manual instrumentation of the code to verify such properties is difficult and error-
prone. Also, the instrumentation has to be done all over again for newer versions of the 
software. 

Aspect-oriented programming (AOP) alleviates these problems by treating the 
instrumentation for such properties as a cross-cutting concern. 

AOP languages such as AspectJ and AspectC++ support expressions that can 
encapsulate such concerns in special classes called aspects. An aspect can change the 
behavior of the program by applying additional behavior called advice at various join 
points in a program. You can specify a query that detects whether a given join point 
matches. Such a query is called a pointcut. An aspect can also make structural changes to 
other classes, such as adding members or parents. 

For example, the following aspect specification can be used to check whether there are 
an equal number of calls to the fopen() and fclose() methods when the program 
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ends. A model checker can capture the exception raised by the assertion violation when 
“counter > 0”. 

aspect FileOpenCloseCounter {
  int counter; 
  FileOpenCloseCounter() { 
    counter = 0; 
  } 
 
  advice call("% %::fopen(...)"): after() { 
    ++counter; 
  } 
 
  advice call("% %::fclose(...)"): after() { 
    if (counter > 0) 
      --counter; 
  } 
 
  advice execution("% main(...)"): after() { 
    assert (counter =< 0); 
  } 
}; 

 
Many AOP languages support method executions and field references as join points. 
The developer can write a pointcut to match, for example, all field-set operations on 
specific fields, and code to run when the field is actually set. Some languages also 
support extensions of specific classes with new method definitions. AOP languages vary 
based on the join points they expose, the language they use to specify the join points, the 
operations permitted at the join points, and the structural enhancements that can be 
expressed. 

We used AOP, and in particular AspectC++, for code instrumentation in order to check 
many of the properties in our SAFM case study (Figure 3). We analyzed several versions 
of the software, and the ease of instrumentation that the AOP techniques provided 
saved a lot of time and effort. 

AspectC++

AspectsSource Code
Instrumented 
Source Code

 

Figure 3  Code Instrumentation using AspectC++ 
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2.3.5 Understanding Property Violations 

When a property violation is detected by the model checker, the model checker typically 
generates a counterexample trace. The trace points to the location where the violation 
was detected, but quite often what is reported is only a symptom of a bug which 
occurred much earlier in the execution trace. At this stage, you need to localize the root 
cause of the property violation. 

Quite often one bug may cause the code to fail in many different ways. Selection of 
suitable search strategies allows us to find the shortest paths to the problem, thereby 
minimizing the distance between the detected property violation and the root cause. 
Chapter 5 describes some of these strategies. 

One common technique for localizing the root cause of the violation is to let the model 
checker generate multiple counterexamples, and use these counterexamples collectively 
to find the root cause. 
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3 Test Drivers and Environment 
Models 

3.1 Analyzing Open Programs 
A key problem in software model checking is environment modeling. Software model 
checkers such as JPF or SPIN can analyze only closed, executable programs—that is, 
programs that operate on fully specified inputs. However, most software systems are 
fundamentally open, since their behavior is dependent on patterns of invocation of 
system components and values defined outside the system but referenced within the 
system. Whether you are reasoning about the behavior of whole programs or about 
program components, a model of the environment is therefore essential in enabling 
model checking.  

An environment model for a software component (unit) establishes an abstract runtime 
context in which the unit executes. It contains both data information (e.g., values that 
flow into the unit) and control information (e.g., a sequence of method invocations in the 
unit interface) that influence the unit under analysis. This model should be small enough 
to enable tractable verification, but sufficiently detailed to not mask property violations. 

Environment models allow developers to analyze individual units early in the software 
lifecycle, when they become code complete, and possibly before the whole software 
system has been developed and integrated. In this case, model checking is used as an 
adjunct to unit testing, and the environment models play the role of a testing harness. 
Environment models are also used in the context of verifying large systems: The system 
can be broken up into smaller parts which can be verified separately and more 
efficiently. In this case, the environment model for an analyzed component represents 
the rest of the system with which the component interacts. The environment encodes 
only the interface behavior and is much smaller than the actual components it 
represents, enabling more efficient verification. Environments can also be used to model 
non-source-code components (for example, hardware components when analyzing 
embedded software) and native libraries that cannot be analyzed directly by a software 
model checker. 

3.2 Universal Environments 
Unit testing involves the definition of drivers and stubs. Drivers are program components 
that invoke operations on the unit under test. Stubs are program components that 
implement operations invoked by the unit. Stubs and drivers can be defined to also 
represent parallel contexts representing those portions of an application that execute in 
parallel with and engage in inter-thread communication with the procedures and 
threads of the software unit under test. In a similar way, environment models consist of 

25 



Program Model Checking: A Practitioner’s Guide 

a collection of drivers and stubs that together with the analyzed unit form a closed 
system that is amenable to model checking. The universal environment is capable of 
invoking (or refusing) any operation to or from the unit, in any order. 

To construct such environments, you need a description of the classes, interfaces, and 
packages that make up the unit, and the unit operations that are possible. These include 
the method (procedure) invocations in the unit’s interface, methods invoked by the unit, 
global variables changing their values, etc. For simplicity, in this chapter we phrase our 
discussion and examples in terms of the Java language. In this case, a software 
component can be a Java class and the operations are its public methods and the 
methods invoked by the class, together with the global variables such as public fields 
that change their value. 

For example, consider the following Java class IntSet that implements sets of integers. 
The set operations consist of the public methods isEmpty, add, remove, and contains. 
The implementation also supports iteration over set elements (method apply) by 
invoking a user-defined callback routine (method doWork in interface CallBack) for 
each element in the set.  

 

public Interface CallBack { 

 public boolean doWork(); 

} 

class IntSet { 

public IntSet() {} 

 public boolean isEmpty() {} 

 public void add(int elem) {} 

      public void remove(int item) {} 

      public Boolean contains(int item) {} 

 public void apply(CallBack cb) {} 

} 

 

The universal driver for this class is a thread that invokes any set operation in any order. 
You can write multiple threads executing the driver code to exercise the unit in a 
concurrent environment. The stub for procedure doWork is implemented in class 
CallBackStub. 

 

public class UniversalSetDriver extends java.lang.Thread { 

 public void run() { 

  IntSet s0 = new IntSet(); 

  CallBack cb0 = new CallBackStub(); 

   

  while(chooseBool()) 

  switch(chooseInt(5)){ 

    case 0: s0.isEmpty(); break; 

    case 1: s0.add(chooseInt(10)); break;  

    case 2: s0.remove(); break; 

    case 3: s0.contains(chooseInt(10)); break; 

    case 4: s0.apply(cb0); 
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  } 

 } 

}  

 

public class CallBackStub implements CallBack { 

 public Boolean doWork() { return chooseBool(); } 

} 

 

These environments use modeling primitives that are interpreted by the underlying model 
checker as a non-deterministic choice over a set of values. For example, chooseBool() 
represents a choice between true and false and chooseInt(n) a choice over 0 .. n-1. Note 
that we assumed here that the parameters in the procedure calls take values from a 
small finite domain (1 … 10). This ensures that the sets created by the universal 
environment cannot grow without a bound, and therefore the unit can be analyzed 
thoroughly with a model checker. This is not always the case, and abstraction often must 
be used in conjunction with environment generation to ensure that the local data of the 
unit and the data that flow between the unit and the environment range over finite 
domains (see Chapter 4). 

3.3 Filter-Based Methods 
After the universal environments are generated, they are combined with the code of the 
unit and then a model checker such as JPF can be used to verify unit properties (e.g., that 
there are no runtime exceptions). In many cases, behavioral information about unit 
interfaces, rather than just signatures, can be exploited to refine the definition of the 
environment used to complete the unit’s definition. For example, calling remove on an 
empty set raises a runtime exception. However, the developer of IntSet may know that 
the set is always used in a context in which remove is called only on a non-empty set. In 
this case, he or she may want to encode this assumption about the calling context 
directly into the environment model: 

 

public class RefinedSetDriver extends java.lang.Thread { 

 public void run() { 

  IntSet s0 = new IntSet(); 

  CallBack cb0 = new CallBackStub(); 

     

  while(chooseBool()) 

  switch(chooseInt(5)){ 

   case 0: s0.isEmpty(); break; 

   case 1: s0.add(chooseInt(10)); break;  

   case 2: assume(!s0.empty()); s0.remove(); break; 

    case 3: s0.contains(chooseInt(10)); break; 

    case 4: s0.apply(cb0); 

  } 

 } 

}  
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Here, the modeling primitive assume(cond) is used to instruct the underlying model 
checker to backtrack if cond is not true (in JPF: Verify.ignoreIf(!cond)). Checking 
the set implementation with this refined environment will yield no runtime exceptions. 

3.3.1 Discharging Assumptions 

Environment assumptions (or filters) capture the knowledge about the usage of software 
units and they help to refine a naively generated environment. These assumptions need 
to be subsequently checked against implementations of the missing components (that 
represent the environment) in order to make sure that the entire system satisfies the 
desired properties. For example, you need to check assert(!empty()) whenever 
remove is invoked by a client application that uses IntSet. 

Assumptions can be encoded in a variety of forms, such as predicates (!empty(), in the 
set example), finite-state machines, temporal logical formulas, or regular expressions 
that encode patterns of component operations that the environment may execute.  

Checking component property (P) under environment assumptions (A) forms the assume 
guarantee paradigm, and it is the basis of many formal frameworks for modular 
verification (Jones 1983; Pnueli 1984): P is the guarantee that the component provides 
under assumption A. When A and P are temporal logical formulas, then it is possible to 
model check directly A => P on the unit closed with the universal environment; here 
“=>” denotes logical implication: P is checked only on the behaviors that satisfy (i.e., are 
filtered by) A. Alternatively, as discussed for the set example, you can encode the 
assumptions directly into the environment (in which case A is eliminated from the 
formula to be model checked). 

Regular expressions are a familiar formal notation to many developers, and often easier 
to use than temporal logics for specifying environment assumptions. Regular 
expressions defined over the alphabet of unit operations describe a language of 
operations that can be initiated by the environment. As an example, 
java.util.Iterator presents a standard interface for generating the elements stored 
in a Java container such as a set. This interface assumes that for each instance i of a class 
implementing the Iterator, all client applications will call methods in an order that is 
consistent with the following regular expression assumption:  

 (i.hasNext; i.next(); i.remove()?)* 

This expression encodes sequencing (a call to hasNext() must precede a call to next(), 
otherwise a runtime exception may be thrown if the iteration has no more elements) and 
also optional calls (remove()) that can be repeated 0 or more times (*). This assumption 
can be easily translated into code to encode a driver or the Iterator, or into an LTL 
formula that can then be used to be discharged with SPIN. 
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3.4 Tool Support and Applications 
Environment models are essential for software model checking. The problem of 
environment generation is difficult and it is the subject of active research. There is little 
tool support publicly available, most of what is available comes from academia or 
research labs. One such tool, BEG (BEG website) from Kansas State University, is 
described in more detail below. 

The Bandera Environment Generator (BEG) tool builds environment models for Java 
components. It uses static analysis to discover the interface of the analyzed component 
and it uses filters (regular expressions and temporal logic formulas) and available code 
from the rest of the components to build precise environment models. BEG can be used 
in conjunction with the Bandera tool set or JPF for model checking. BEG has been 
applied to Java applications developed at NASA Ames and Fujitsu.  

While BEG proved to be quite useful in generating environments for small systems, the 
tool support is much more valuable when applied to larger software systems. One such 
application is described in (Tkachuk, Dwyer, and Pasareanu 2003) where BEG was 
applied to Autopilot, a Swing-based GUI for an MD-11 autopilot simulator used at 
NASA. The application code consists of more than 3600 lines of code clustered in one 
class. The system makes intensive use of java.awt and java.swing GUI frameworks 
that influence the behavior of the system; the main thread of control is owned by the 
framework and application methods are invoked as application callbacks. To analyze 
the system, BEG was used to generate stubs for all the GUI framework components and 
to generate drivers that encode assumptions about user behavior. JPF was used to check 
for mode confusion properties. JPF detected a mismatch between the user model and the 
software’s state (encoded as an assertion violation), indicating potential mode confusion. 
As mentioned in (Tkachuk, Dwyer, and Pasareanu 2003), a previous effort to build an 
environment for this application required several months of manual work and yielded 
an environment model that was inconsistent with the actual environment 
implementation. From relatively simple assumption specifications, BEG generated an 
environment in less than 4 minutes that was consistent with the implementation. 
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4 Program Abstraction 

4.1 Introduction 
Abstraction is essential for software verification. Without abstraction, a realistic software 
application is usually too large to be analyzed exhaustively with a model checker. 
Abstraction aims to transform a program into another program that still has some key 
properties of the original program, but is much simpler, and therefore easier to analyze. 
In model checking, abstractions are used to reduce the size of a program’s state space in 
an attempt to overcome the memory limitations of model-checking algorithms (Cousot 
and Cousot 1997; Cousot and Cousot 1999; Ball et al. 2001; Henzinger et al. 2002; 
Havelund and Shankar 1996; Clarke, Grumberg, and Long 1994; Saïdi 1999). 

Given a program and a property, the strategy of model checking by abstraction can be 
summarized as follows. 

1. Define an abstraction mapping between the concrete program and an abstract 
program. 

2. Use the abstraction mapping to transform the concrete program into an abstract 
program; usually the property needs also to be transformed into an abstract 
property. 

3. Apply model checking on the abstract program. 

4. Map the results of model checking the abstract program back to the original 
program. 

We distinguish between data abstractions, which replace the large domains of program 
variables with smaller domains, and control abstractions, such as slicing, which remove 
program components that are irrelevant to the property under analysis. This chapter is 
mainly concerned with data abstraction. Abstractions can be further characterized by the 
way they preserve a property or class of properties being verified, or by the way they 
approximate the behavior of the system being verified. 

4.1.1 Property Preservation 

To use abstraction to show that a property holds on a concrete program, any 
abstractions must be property preserving. Property preservation enables you to take the 
results of checking the property on the abstracted program and to map them back to the 
original program. There are several forms of property preservation. 

4.1.1.1 Weak Preservation  

An abstraction of a concrete system is weakly preserving if a set of properties true in the 
abstract system has corresponding properties in the concrete system that are also true. 
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4.1.1.2 Strong Preservation  

An abstraction is strongly preserving if a set of properties with truth values of either true 
or false in the abstract system has corresponding properties in the concrete system with 
the same truth values. Strong preservation may not seem to allow much room for 
simplifying the system during abstraction. However, because property preservation is 
defined with respect to a specific property (or a specific class of properties, as in LTL), 
there are many useful strongly preserving abstractions. 

Weakly preserving abstractions can be much more aggressive in reducing the state space 
of a program and therefore they enable more efficient verification. The price paid is that 
the reported property violations may not correspond to real violations in the concrete, 
unabstracted program. 

4.1.1.3 Error Preservation  

When verification is used to disprove properties (find bugs), a third type of property 
preservation comes into play: An abstraction is error preserving if a set of properties that 
is false in the abstract system has corresponding properties in the concrete system that 
are also false. 

4.1.2 Behavior Approximation 

Abstractions are also described in term of the relative behavior of the abstract system 
versus the concrete system. A program’s “behavior” is defined as the set of possible 
execution paths, also called traces or computations. These are the allowable sequences of 
program states, starting from a valid initial state. 

4.1.2.1 Over-approximation  

Over-approximation occurs when there are more behaviors in the abstract system than the 
concrete system. This approach provides a popular class of weakly preserving 
abstractions for properties that hold on all paths of a program (e.g., safety properties or 
more general universally quantified path properties such as LTL). Weak preservation 
holds because when behaviors (execution paths) are added to create the abstract system, 
any property that is true for all paths is true for any subset of those paths—including the 
subset that exactly describes the behavior of the concrete system. However, due to over-
approximation, errors that are reported for the behaviors of the abstract program may 
not correspond to behaviors in the original program. To enable verification, these 
“spurious” errors must be removed by reducing the degree of over-approximation. The 
goal is to find an abstraction that is precise enough to allow verification of a property, 
while abstract enough to make verification practically tractable. 
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4.1.2.2 Under-approximation 

Under-approximation occurs when behaviors are removed to create the abstract system. 
This approach corresponds to error-preserving abstractions (where the properties are 
safety or more general universal properties such as LTL). As mentioned, these 
abstractions are most useful for finding whether properties are false; hence, they can be 
used for debugging. Simple examples of under-approximation include: limiting the size 
of the data domains of a program (e.g., reduce the size of a communication channel) or 
using a model checker with a limited search depth or until it runs out of resources 
(memory or time). Program testing is another example: A test driver uses test cases to 
lead the system through a subset of the possible program executions. Testing is an error-
preserving abstraction for these properties. 

4.1.2.3 Exact Abstraction 

An abstraction is exact (with respect to a property or a class of properties) if there is no 
loss of information due to abstraction. Exact abstractions are strongly property 
preserving. Under-approximations can be strongly preserving for properties if the 
removed behaviors do not influence the verification result. This is difficult to claim in 
practice when the under-approximation is generated by incomplete “coverage” of the 
program using a set of test cases or by an incomplete model-checking run. In this case, 
“coverage” is measured in terms of the program structure, which does not provide 
strong evidence to argue for preservation of many classes of properties. Typical model 
checking optimization techniques such as partial order and symmetry reductions 
(Clarke, Grumberg, and Peled 2000) are strongly preserving under-approximations. 

Another relevant technique is program slicing (Corbett, Dwyer, and Hatcliff 2000). Slicing 
reduces the behaviors of a program by removing control points, variables, and data 
structures that are deemed irrelevant to checking a given property. Given a program 
and some statements of interest from the program, called the slicing criteria, a program 
slicer computes a reduced version of the program by removing program statements that 
do not affect the computation at the statements in the criterion. When checking a 
program against a property P, a slicing algorithm removes all the program statements 
that do not affect the satisfaction of P. Thus the property P holds on the reduced 
program if and only if it also holds on the original program (that is., slicing computes an 
exact abstraction). Program slicing is provided by analysis tools such as SPIN and 
Bandera. 

4.2 Data Abstraction 
Our presentation for data abstraction follows the abstract interpretation framework 
(Cousot and Cousot 1999). Abstract interpretation establishes a rigorous methodology 
for building data abstractions that are weakly preserving with respect to safety 
properties. In this framework, an abstraction maps the set of values of a program data 
type to an abstract domain and it maps the operations on that data type to functions 
over abstract values. Thus, the abstract program has a non-standard execution. 
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Typically, the behaviors of the abstracted program are an over-approximation of the 
behaviors of the original program; each executable behavior in the original program is 
“covered” by a behavior in the abstract program. Thus, the abstraction is weakly 
preserving. When the abstract behaviors are checked with a model checker against a 
safety property (or a property written in LTL) and found to be in conformance, we can 
be sure that the true executable behaviors of the unabstracted program satisfy the 
property.  

4.2.1 Abstract Interpretation 

We present an abstract interpretation in an informal manner, as a collection of three 
components: 

1. A finite domain of abstract values; 

2. An abstraction function that maps concrete program values to abstract values; and 

3. A collection of primitive operations (one for each operation in the program). 

Substituting concrete operations applied to selected program variables with 
corresponding operations of an abstract interpretation yields an abstract program. 

Example 

Consider a simple property that you may wish to verify: assert(x==0); for a program 
that contains integer variable x. Deciding whether this assertion is violated or not does 
not require complete knowledge about the value of x; you only need to know if x is zero 
or not. In this case, you can use the Signs abstraction which only keeps track of the sign 
of whether x is zero, negative, or positive. 

We can define an abstract interpretation in the following way. The abstract domain is 
{zero, pos, neg}. The abstraction function maps integer value zero to zero, all positive 
integers to pos, and all negative integers to neg. We also need to define abstract versions 
of each of the basic operations on integers. For example, here are the abstract versions of 
+ and ≤ operations on integers: 

+ abs zero pos neg 

zero {zero} {pos} {neg} 

pos {pos} {pos} {zero,pos,neg} 

neg {neg} {zero,pos,neg} {neg} 
 

≤ abs zero pos neg 

zero {true} {true} {false} 
pos {false} {true,false} {false} 
neg {true} {true} {true,false} 

 

Note that the return of multiple values in cases such as neg +abs pos ≡ {zero, pos, neg} 
models the lack of knowledge about specific the specific concrete values that these 
abstract tokens represent. Sometimes this is modeled with an explicit Top value that 
represents all the possible concrete values. This imprecision is interpreted in the model 
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checker as a non-deterministic choice over the values in the set. Such cases are a source 
of “extra behaviors” that result from the abstract model over-approximating the set of 
real execution behaviors of the system. 

In the following, we show excerpts of the Java representation for the Signs abstraction 
(as implemented by the Bandera tool (Corbett et al. 2000)).  

 

public class Signs { 

 public static final int ZERO = 0; 

 public static final int POS = 1; 

 public static final int NEG = 2; 

 

 public synchronized static int abs_map(int n) { 

  if (n == 0) return ZERO; 

  if (n > 0) return POS; 

  if (n < 0) return NEG; 

 } 

 

 public synchronized static int add(int a, int b) { 

  if (a == ZERO && b == ZERO) return ZERO; 

  if ((a == ZERO && b == POS) || 

   (a == POS && b == ZERO) || 

    ((a == POS && b == POS)) 

    return POS; 

  if ((a == ZERO && b == NEG) || 

   (a == NEG && b == ZERO) || 

      (a == NEG && b == NEG)) 

    return NEG; 

  return chooseInt(3); 

 } 

     ...  

}  

 

Here, abstract values are implemented as integer static fields, and the abstraction 
mapping and abstract operations are Java methods. Nondeterministic choice is specified 
as calls to chooseInt(n), which is trapped by a model checker and returns non-
deterministically values between 0 and n-1. The translation of a concrete program into 
an abstract program is straightforward: First select the program data that needs to be 
abstracted, and then replace concrete literals and operations with calls to classes that 
implement the abstract literals and operations. For example, here is a simple application 
that is abstracted using the Signs abstraction. 
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Concrete (un-abstracted) code Abstracted code 
class Application { 
 public static void main(…){ 
  int x=0; 
  int y=0; 
  while(true) { 
    x=x*y ; 
    y++ ; 
  } 
  assert (x == 0);  
 } 

} 

class Application { 
 public static void main(…) { 
  int x=Signs.ZERO; 
  int y=Signs.ZERO ; 
   while(true)){ 
    x=Signs.mul(x,y); 
    y=Signs.add(y,Signs.abs_map(1)) 
   } 
   assert(x.eq(Signs.ZERO)); 
  } 

} 

 

The abstracted program is just another Java program that can be analyzed with a model 
checker such as JPF. Note that the original unabstracted code has an unbounded number 
of states, since variable y is incremented in an infinite loop. However, the abstracted 
program is finite state and you can use JPF to prove that indeed there are no assertion 
violations for the analyzed code. 

In order to guarantee that the behaviors of the abstracted program are indeed a superset 
of the behaviors of the unabstracted program, you must check that each of the abstract 
operations is an over-approximation of the corresponding unabstracted operation. For 
example, the following definition for +abs in the Signs abstraction: neg +abs pos ≡ {zero, pos, 
neg} is not an over-approximation of the un-abstracted “+” since it does not cover the 
cases like -2 + 2 = 0 when adding a negative and a positive number yields the result 
zero. You can use sophisticated techniques such as theorem proving or decision 
procedures to perform these checks automatically 

4.2.2 Useful Abstractions 

We discuss here several useful data abstractions for integer domains. Abstractions for 
other numeric domains can be defined similarly. 

 A Range abstraction tracks concrete values between lower and upper bounds l and u 
and abstracts away the rest of the values. The abstract domain is {below_l, l, …, u, 
above_u}. 

 The Signs abstraction is a special case of the Range abstraction where l=u=0. 

 A Set abstraction can be used instead of a Range abstraction when only equality 
operations are performed, as when integers are used to simulate an enumerated 
type. For example, a Set abstraction that tracks only the concrete values 0 and 2 will 
have the abstract domain {zero, two, other}. 

 A Modulo abstraction merges all integers that have the same remainder when 
divided by a given value.  

 The EvenOdd abstraction with abstract domain {even, odd} is a Modulo 2 abstraction. 

 Finally, the Point abstraction collapses all integer values into an abstract value 
unknown. This abstraction is effectively throwing away all the information about a 
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variable, and it is useful when abstracting variables that have no significant effect on 
the property under analysis.  

All these abstractions are supported by Bandera. 

4.2.3 Abstracting Non-base Types 

So far, we have discussed techniques for abstracting base types. Object-oriented 
programming languages offer some additional opportunities to apply abstraction. We 
discuss some of them below. 

4.2.3.1 Abstractions for Data Structures 

Abstraction of data structures such as Java classes can be achieved by component-wise 
abstraction of each field in a class. This approach is taken by Bandera (Dwyer et al. 2000). 
Array abstractions can be defined in a similar way: the user needs to define an integer 
abstraction for the array index and a data structure abstraction for the component type.  

Manually created abstractions with this structure have been used for the verification of 
wireless protocols and are described in (Dams 1996). 

4.2.3.2 Data Independence 

A system is data independent if the values of the infinite program data it manipulates 
are not relevant to the behavior of the system—for example, a protocol that transmits 
messages may be proved correct regardless of the contents of the messages that are 
transmitted. It has been shown (Wolper 1985) that reasoning about pair-wise message 
ordering properties over a communication channel that accepts large domains of values 
can be achieved by using an abstract domain of size three. Note that this kind of 
reasoning is possible only when the values that are passed through the channel are not 
modified or tested by the program (i.e., the program is data independent). The three-
valued abstract domain {d1, d2, other} provides the ability to distinguish between two 
concrete elements, but it abstracts from their values. Such an abstraction can be thought 
of as a “symbolic” Set abstraction, where d1 and d2 are placeholder for any two different 
values of a particular concrete data domain, while all the other values are abstracted to 
other. 

4.2.3.3 Container Abstractions 

Abstractions for containers (such as lists, stacks, sets, or queues) may represent just the 
state of a container—e.g., full or empty—and abstract away from the actual container 
content. The list operations also need to be abstracted. For example, consider the 
operation insert(l,x) which adds element x to the end of list l. The corresponding 
abstract operation will have the following definition: 

Insert(full, x) ≡ Insert(empty, x) ≡ full 
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You can also use container abstractions in conjunction with the symbolic data 
abstractions presented above. Consider, for example, an abstraction that supports 
reasoning about ordered lists. This abstraction represents the behavior of lists that 
contain elements which were themselves abstracted using the abstract domain {d1, d2, 

other}. Conceptually, the abstract list records whether the list contains a specific d1 value; 

the list also records the ordering of two inserted elements d1 and d2, but the abstraction 
does not record any information about the size of the list. The abstract list domain is the 
following: {empty, some, [d1], [d2],[ d1, d2], [d2, d1], all}. 

 empty represents empty lists. 

 some represents lists with only other values. 

 [d1] represents lists that contain d1 mixed with zero or more other values. 

 [d2] represents lists that contain d2 mixed with zero or more other values. 

 [d1, d2] represents lists that contain d1 and d2 in this order, plus zero or more other 
values. 

 [d2, d1] represents lists that contain d2 and d1 in this order, plus zero or more other 
values. 

 all represents lists that contain multiple d1 and d2 elements. 

Using this abstraction, you can check ordering properties—for example, that if d1 and d2 
are inserted in this order in a list, and then they are removed, they are removed in the 
same order. Similar abstractions have been used for checking ordering properties of 
protocols and memories (see Bensalem, Lackhneck, and Owre 1998; Graf 1999). 

4.2.3.4 Heap Abstractions 

The class abstractions that we discussed above are obtained by abstracting each field of 
base type. The number of instances of that particular class still needs to be bounded; this 
results in an under-approximation that is still useful for finding bugs. Heap abstractions, 
on the other hand, abstract the portion of the heap that stores instances of one particular 
class; therefore, heap abstractions can handle an unbounded number of dynamically 
allocated objects. These abstractions represent heap cells by shape nodes and sets of 
indistinguishable runtime locations by a single shape node, called a summary node. For 
example, a heap abstraction will keep concrete information about memory cells that are 
directly pointed to by local variables and merge all the memory cells that are not pointed 
to by a program variable into a summary heap node. Heap abstractions are most often 
used in static analysis tools (see TVLA website), but they are starting to be used in 
software model-checking approaches. 
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4.3 Predicate Abstraction 
Predicate abstraction (Graf and Saïdi 1997), is a special case of an over-approximating 
data abstraction which maps a potentially infinite-state program into a finite-state 
program, via a finite set of predicates over the program’s variables. Predicate abstraction 
allows you to build an abstract program in a fully automatic way, and it forms the basis 
of numerous automated abstract model-checking tools (Ball et al. 2001; Henzinger et al. 
2002; Chaki et al. 2004). The basic idea is to replace a concrete program variable by a 
Boolean variable that evaluates to a given Boolean formula (a predicate) over the 
original variable. This concept can be easily extended to handle multiple predicates and, 
more interestingly, predicates over multiple variables. For example, assume we have a 
program with two integer variables, x and y, which can grow infinitely. This program 
will have an infinite state space and model checking cannot be complete in general. 
However, if the only relationship of interest between the two variables is their equality, 
we can use a predicate representing this relationship, B≡ x==y, to construct an abstract 
program as follows. (We used similar abstraction when analyzing DEOS in section 4.5.)  

1. wherever the condition x==y appears in the program, we replace it with the 
condition B==true, and  

2. whenever there is an operation involving x or y, we replace it with an operation 
changing the value of B appropriately.  

When generating the abstract program, over-approximation can occur when not enough 
information is available to calculate a deterministic next action in the abstract program. 
For example, consider the following concrete program instruction:  

x := x + 1; 

Assume that in the abstract program, B is false (x!=y). In this case, B can become non-
deterministically true or false as a result of executing the instruction, because there is not 
enough information encoded in the initial value of B (specifically, we do not know 
whether y==x-1). On the other hand, if B is true (x==y) before executing x:=x+1, then 
we know for sure that B becomes false after execution. Therefore, the abstract version of 
the instruction with respect to B is the following: 

if (B) // x==y 

 B := false; 

else // x!=y 

 B := chooseBool(); 

 

The abstract version of a program can be computed in a semi-automatic way, using off-
the-shelf decision procedures (or theorem provers). Investigating approaches to 
automatically select and refine abstractions is an active research area. The problem of 
constraining the over-abstraction is analogous to the problems encountered when 
attempting to make static analysis more precise. 

Counter-Example Guided Abstraction Refinement (the CEGAR loop) is a popular 
approach to automatic abstraction and refinement. Recall that due to over-
approximation introduced by the abstraction, reported counterexamples may be 
spurious. The CEGAR method analyzes abstract counterexamples to see if they 
correspond to real errors. If they are spurious, the abstraction is refined automatically: 
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New abstraction predicates are added and the abstraction is computed again, such that 
the previously reported spurious counterexample is eliminated. Counterexample 
analysis uses weakest precondition calculations and decision procedures or theorem 
proving. The CEGAR loop leads to fully Automatic Predicate Abstraction.  

4.4 Model-Driven Verification 
So far we have looked at data abstraction techniques that compute over-approximations 
of programs. We discuss briefly here a complementary technique, model-driven 
verification, which analyzes an under-approximation of a system. The presentation in 
this section follows (Holzmann and Joshi 2004). 

Model-driven verification, as implemented in the SPIN tool, advocates the use of 
abstraction mappings during concrete model checking to efficiently analyze an under-
approximation of the feasible behaviors of a system. All reported counterexamples 
correspond to real errors. The model checker traverses the concrete transitions of the 
analyzed system and for each explored concrete state it stores an abstract version of that 
state. The abstract state, computed by an abstraction mapping provided by the user, is 
used to determine whether the model checker’s search should continue or backtrack (if 
the abstract state has been visited before). This allows for detection of subtle errors 
which cannot be discovered with classic techniques. Model-driven verification has been 
applied to the verification of a NASA Mars Exploration Rover (MER) Arbiter (Holzmann 
and Joshi 2004) (see section 9.5). The technique has been subsequently extended with 
automatic predicate abstraction and refinement (Pasareanu, Pelanek. and Visser 2005), 
and applied to the verification of a component extracted from an embedded spacecraft 
control application that has deadlocked in space—the NASA Deep Space 1 Remote 
Agent Experiment. 

SPIN v4 provides the capability of including a software application (written in C) 
without substantial change into a verification test harness written in Promela, and then 
verifying it directly, while preserving the ability to perform data abstraction. The test 
harness is used to drive the application through all its relevant states. Several Promela 
primitives can be used to connect a verification model to implementation-level C code:  

 c_decl introduces the types and names of externally declared C data objects that are 
referenced in the model. 

 c_track defines the data objects that appear in the embedded C code that should be 
considered to hold state information during model checking. 

 c_code encloses an arbitrary fragment of C code. 

 c_expr evaluates a C expression to a Boolean value. 

Consider the following small example (taken from Holzmann and Joshi 2004): 

 

c_decl { 

 extern float x; 

 extern void fiddle(void); 

}; 
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c_track "&x" "sizeof(float)"; 

init { 

 do 

 :: c_expr { x < 10.0 } -> c_code { fiddle(); } 

 :: else -> break 

 od 

} 

 

Here c_decl introduces definitions of externally declared variable x and function 
fiddle(); c_track indicates to the model checker that variable x holds state 
information that must be tracked (it provides the address of the variable and its size in 
bytes). The init process repeatedly calls the external function fiddle(), while it sees 
that the value of x is less than 10.0. Note that the c_track primitive supports two 
separate goals: state tracking and state matching.  

There are cases where the value of an external data object should be tracked, to allow the 
model checker to restore the value of these data objects when backtracking, but where 
the data object does not actually hold relevant state information. In other cases, the data 
object does hold state information, but contains too much detail. In both of these 
situations you can define abstractions on the data that are used in state-matching 
operations, while retaining all details that are necessary to restore state in the application 
in tracking operations. An additional, and optional, argument to the c_track primitive 
specifies whether the data object should be matched in the state space. There are two 
versions: 

c_track "&x" "sizeof(float)" "Matched"; 

and 

c_track "&x" "sizeof(float)" "UnMatched"; 
 

with the first of these two being the default if no third argument is provided. The value 
of unmatched data objects is saved on the search stack, but not in the state descriptor. 
The simplest use of this extra argument is for tracking data without storing it in the 
model checker’s searched state space. When used in this way, the use of unmatched 
c_track primitives equates to data hiding. Another use is for unmatched c_track 
statements to hide the values of selected data objects and then to add abstraction 
functions (implemented in C) to compute abstract representations of the data that will 
now be matched by he model checker. 

As a simple example, consider two integer variables x and y that appear in an 
application program. Suppose that the absolute value of these two variables is irrelevant 
to the verification attempt, but the fact that the sum of these two variables is odd or even 
is relevant. We can setup a data abstraction for this application as follows: 

/* data hiding */ 

c_track "&x" "sizeof(int)" "UnMatched"; 

c_track "&y" "sizeof(int)" "UnMatched"; 

/* abstraction: */ 

c_track "&sumxy" "sizeof(unsigned char)" "Matched"; 
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and we add the abstraction function: 

c_code { 

void abstraction(void) { sumxy = (x+y)%2; } 

} 

 

which must be called after each state transition that is made through calls on the 
application-level code. 

4.5 Tool Support and Applications 
As we have mentioned, Bandera supports data abstraction and SPIN supports model-
driven verification. SLAM (from Microsoft) performs predicate abstraction with 
counterexample-based automatic refinement. The SLAM analysis engine has been 
incorporated into a new tool Static Driver verifier (SDV), which is being used within 
Microsoft for checking Windows device drivers. It is currently in beta form as part of the 
Windows Driver Development Kit. BLAST (developed at UC Berkeley) and MAGIC 
(developed at Carnegie Mellon University) (MAGIC website) are freely available 
software analysis tools that also use predicate abstraction for the analysis of C code. See 
sections 7.4 and 7.9 for information about BLAST and SLAM. 

Abstraction has been proved essential for the verification of diverse software, ranging 
from Windows device drivers to flight software. We describe here our experiment with 
using abstraction for the automated verification of the Honeywell DEOS realtime 
scheduling kernel (see section 9.3). The experiment involved translating a core slice of 
the DEOS scheduling kernel from C++ into Promela, constructing a test driver, and 
carefully introducing data abstraction to support exhaustive verification. Verification of 
several properties led to the rediscovery of a known error in the implementation. 

In order to allow exhaustive verification of the DEOS model, it was necessary to apply 
abstraction to the program. Our goal was to introduce abstraction carefully and 
selectively to increase our understanding of how abstraction is applied during 
verification. In this section, we relate the steps we took to first introduce a simple, ad-
hoc abstraction into the system, and then to refine the abstraction using predicate 
abstraction.  

In the abstraction process, we were guided by several experiments showing traces 
through the system that were 2,000,000 steps long. Based upon our limited intuition of 
how DEOS works, this seemed too long because the system’s behavior is cyclic in 
nature. These extremely long traces indicated that some data was being carried over 
multiple cycles of computation. We were able to identify this data simply by running a 
simulation and observing the SPIN data values panel. In particular, we identified a data 
member, itsPeriodId, in class StartOfPeriodEvent, which was operating as a 
counter, incrementing in a potentially infinite loop. An additional variable, 
itsLastExecution, was also incrementing, because it was periodically assigned the 
value of the itsPeriodId counter.  
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The section of the DEOS kernel involving itsPeriodId and itsLastExecution is 
shown below. 

void StartOfPeriodEvent::pulseEvent( DWORD systemTickCount ) {  

 countDown = countDown - 1;  

 if ( countDown == 0 ) {  

  itsPeriodId = itsPeriodId + 1;  

  ...  

  }  

void Thread::startChargingCPUTime() {  

 // Cache current period for multiple uses 

  periodIdentification cp = itsPeriodicEvent->currentPeriod();  

  ...  

 // Has this thread run in this period?  

 if ( cp == itsLastExecution ) {  

  // Not a new period. Use whatever budget is remaining.  

  ...  

 }  

 else {  

  // New period, get fresh budgets.  

  ...  

  // Record that we have run in this period.  

  itsLastExecution = cp;  

  ...  

 }  

 ...  

}  

 

itsPeriodId and itsLastExecution are used to determine whether or not a thread 
has executed in the current period of time. The two variables are either equal or different 
by one. After consulting with the DEOS developers, we were assured that the version of 
DEOS we were considering does in fact ensure that each thread is scheduled every 
period, and hence we changed itsPeriodId to be incremented modulo 2. This change 
led to an under-approximating abstraction that allowed exhaustive analysis of the entire 
state space of the buggy version of DEOS as well as the corrected version. We also used 
predicate abstraction, using a predicate that encodes a relationship between 
itsPeriodId and itsLastExecution (the predicate records whether they are equal or 
not). As explained in (Penix et al. 2005), this abstraction is in fact exact (i.e., there is no 
loss of precision due to abstraction). 
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5 Search and Partial Coverage 
A model checker can be used to verify the correctness of a finite-state system with 
respect to a desired property by searching a labeled state-transition graph that models 
the system to see whether it satisfies the property specified in some notation (e.g., as a 
Linear Temporal Logic (LTL) formula). 

After running a model checker on the target application model there can be two main 
outcomes. Either the tool finds one or more violations of the specified property or it does 
not. If it finds such a violation, the tool typically returns a counterexample—a trace of 
program execution—which shows how it occurred. The user can then use the results to 
locate and fix the problem. 

On the other hand, the model checker might not find such violations. Instead, it might: 

 Finish and report that its work is complete and no violations were detected; 

 Die before completing because it ran out of system resources such as memory; or 

 Get lost in the vast state space and seem to be running indefinitely (the execution 
takes too long with no sign of the light at the end of the tunnel). 

We have seen that the primary challenge in program model checking is the state space 
explosion problem. Exploring all the behaviors of a system is, to say the least, difficult 
when the number of behaviors in the possible inputs, contents of data structures, or 
number of threads in the program is exponential. Even with the right models and 
property specifications, it is not possible in practice cover the entire state space of most 
realistic systems and therefore result (1) is unlikely. Quite often the best we can do is to 
try to maximize our partial coverage of the state space as far as possible. 

The good news is that models and property specifications are not the only input 
parameters for a model checker. Rather than blindly search through the state space 
using some fixed search strategy, as is common for traditional model checking, program 
model checkers can be configured to maximize their effectiveness in checking the 
desired properties during a particular run. For example, different search strategies and 
heuristics can be selected to guide the model checker as it navigates through the maze of 
the state space to focus on the parts that are most likely to contain bugs first—and there 
lies the real art of model checking.  

When a model checker does not find any violations of the specified properties, it 
typically does not return any information beyond an indication that the work was 
complete or that some runtime exception occurred. It would be nice to get some coverage 
metrics to indicate which parts of the state space were covered during the analysis. This 
information can also be used as heuristics in future runs of the model checker to achieve 
better coverage of the state space.  

In section 5.1 we describe some of the searching strategies that are commonly used in 
software model checking. Section 5.2 describes the relationship between model checking 
and testing. In section 5.3 we present several ways in which program model checking 
can be improved by taking advantage of the close relationship to testing, and discuss 
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structural coverage measures from testing that can measure partial coverage by model 
checking. In section 5.4 we discuss how the capability to calculate structural coverage 
(e.g., branch coverage) can be used by the model checker for guided search. 

5.1 Selecting a Search Strategy 
Model checkers such as JPF and SPIN support a number of search strategies used to 
explore the state space of the program. 

Two of these strategies are the most well-known—Depth-First Search and Breadth-First 
Search, which are discussed below. 

5.1.1 Depth-First Search 

With Depth-First Search (DFS), the model checker begins at the start state and explores 
each of its outgoing transitions to other states as far as possible along each branch before 
backtracking and selecting the next transition. DFS goes deeper and deeper until a goal 
state is reached (e.g., an error state such as a deadlock) or it hits a state with no outgoing 
or unexplored transition (e.g., an end state). The search backtracks, returning to the most 
recent state with unexplored transitions. A stack is usually used to hold the frontier (the 
set of states that are still in the process of being explored), and therefore the last state 
added to it is always selected first during the search. 

5.1.2 Breadth-First Search 

With Breadth-First Search (BFS), the model checker again begins at the start state and 
explores all its outgoing transitions to the neighboring states. Then for each of those 
nearest states, it explores all of its outgoing transitions to its neighbor states, and so on, 
until it hits a goal state or a state with no outgoing or unexplored transition. A queue is 
usually used to hold the frontier, and therefore the first state added to it is always 
selected first during the search. 

5.1.3 DFS and BFS Tradeoffs 

In general, DFS will have lower memory (space) complexity than BFS since only the 
information about the states and transitions on the current path needs to be stored. This 
contrasts with BFS, where all the states and transitions that have so far been explored 
must be stored. 

One disadvantage of DFS is that it can sometimes be bad for infinite or very large state 
spaces. A search that makes the wrong first transition choice can search for a long and 
indefinite period of time with no success. This is particularly true if a state has a 
successor that is also one of its ancestors and the model checker is not configured to 
check for visited states. The model checker easily can run out of memory before it gets to 
an answer. 
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With BFS, the model checker will not get trapped exploring a blind alley. It is 
guaranteed to find the error state with the shortest path from the root, since all parts of 
the state space are examined to level n before any states on level n+1 are examined. 
Furthermore, if there are multiple error states, the error state that requires a minimum 
number of transitions from the start state will be found first. This contrasts with DFS, 
which may find a long path to the error state in one part of the state space, when a 
shorter path exists in some other, unexplored part of the state space. If the number of 
neighboring states (also called branching factor) is too large, the DFS model checker may 
run out of memory before it can reach larger depths in the state space where the 
interesting states may be hiding. Of course, if the model checker is configured to store 
states regardless (for example to avoid checking the previously visited states again) then 
memory consumption would not be different in the two cases. 

5.1.4 Bounded Searches 

So far we have looked at two main search algorithms that can in principle be used to 
systematically search the whole state space. But the state space may be just too big for 
such strategies to find what we are looking for before the model checker runs out of 
space. To alleviate, this problem we can use bounded versions of the DFS and BFS 
search strategies. 

Bounded Depth-First Search (BDFS) works exactly like Depth-First Search, but avoids 
some of its drawbacks by imposing a maximum limit on the depth of the search. Even if 
the search is capable of exploring transitions to states beyond that depth, it will not do 
so and thereby it will not follow infinitely deep paths or get stuck in cycles. Therefore, it 
can find a solution only if it is within the depth limit. For essentially infinite-state 
systems (e.g., in our DEOS case study) limiting the depth is the only practical way to use 
DFS, but finding the proper depth can be difficult and large depths may result in 
extremely long counterexamples. 

In practice, you can run the model checker with BDFS strategy multiple times, each time 
with ever-increasing depth limits (0, 1, 2, …). This is called Iterative Deepening Depth-First 
Search. This way we still have the advantage over BFS that space complexity is O(n), and 
we have the advantage over DFS that we are guaranteed to find the solution with the 
shortest path from the root. We can also show that the time complexity of iterative 
deepening is not much worse than for breadth- or depth-first search. 

Similarly, a Bounded Breadth-First Search (BBFS) works exactly like Breadth-First Search, 
but it imposes a maximum limit on the number of neighboring states that are searched 
next. 

5.1.5 Heuristic Search 

Heuristic search exploits the information known about the system under analysis in order 
to accelerate the search process. The basic idea of heuristic search is that rather than 
trying all the possible search paths, the model checker tries to focus on paths that seem 
to be getting it nearer to the error states. This is a strong motivation for the use of 
heuristic search in bug finding; model checkers which rely on traditional DFS algorithms 
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tend to return much longer counterexamples than those which support heuristic search. 
Of course, the model checker which uses heuristic search generally can’t be sure that it is 
really close to an error state, but it might be able to have a good guess. Heuristics are 
used to help the model checker make that guess. 

Different search algorithms can be combined with heuristics. To use heuristic search, we 
need an evaluation function that scores a state in the state space according to how close 
to the error state it seems to be—the higher the score, the more desirable the state is to be 
explored next. 

In general, the heuristic evaluation function may depend on many factors: 

 The description of the next state 

 The description of the goal state 

 The information gathered by the search up to that point 

 Any extra knowledge about the problem domain 

Model checkers such as Java PathFinder allow users to extend the existing set of 
heuristics that come with the tool with user-defined heuristics. JPF provides full access 
to its internal state through an API that can be used to define powerful and complex 
heuristics. In practice, users can combine different heuristics which are used during the 
search. As a result many search algorithms exist and their full description is beyond the 
scope of this guidebook. We will only cover some of the most common algorithms that 
we have found useful in our case studies. 

5.1.5.1 Best-First Search 

Best-first search is a variant of BFS which improves it by exploring the most promising 
neighboring state chosen according to the result of the evaluation function for that state. 
Efficient selection of the current best candidate for exploration is typically implemented 
using a priority queue. 

There are different ways to compute the evaluation function, and therefore there are 
different variants and refinements of best-first search. Some of those described here are 
Greedy Best-First Search, A* Search, and Beam search. 

5.1.5.1.1 Greedy Best-First Search 

Greedy best-first search uses a heuristic that attempts to predict how close the end of a 
path is to the goal state, so that paths which are judged to be closer to the state are 
explored first. 

5.1.5.1.2 A* Search 

A* (pronounced “A star”) is a best-first search that attempts to minimize the total length 
of the path from the initial state to the goal state. It combines advantages of breadth-first 
search, where the shortest path is found first, with those of best-first search, where the 
state that we guess is closest to the goal state is explored next. 
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The heuristic function score, f(s), for a state s is calculated as the sum of the length of the 
path so far, g(s), plus the estimated length to the goal state, h(s): 

f(s) = g(s) + h(s) 

This search strategy is particularly attractive for verification purposes where we want to 
get the shortest error trace to a bug. We may often use other simple-minded search 
strategies to find a bug, but then use A* to get the shortest path to it. 

5.1.5.1.3 Beam Search 

Beam search is an optimization of the best-first search that uses the heuristic function to 
discard all but the m best candidate states at each depth, where m is the bound on the 
“width of the beam.” If more than m candidates exist, the worst candidates are 
discarded. This reduces the space requirements of best first search. Assigning a bound to 
the width of the search can also be applied to best-first, greedy best-first, and A* 
searches. 

When such a bound is used, termination of the search without discovering an error does 
not imply correctness of the system. However given that the advantage of heuristic 
search is its ability to quickly discover fairly short counterexamples, in practice use of 
such a bound is an effective bug-finding tactic. 

We may have to run the model checker multiple times each time with a different and 
increasing value for m. This is called iterative widening. 

5.1.5.2 Random Search 

Random search non-deterministically selects a state on the frontier to explore, and can 
find results even when exhaustive search is not feasible. Its success in artificial 
intelligence makes it a good candidate search strategy for model checking, but its 
application obviously limits the rigor of verification, because faults can hide in portions 
of the state space not explored in random trials. Random search should be used when 
the objective is more bug-finding than verification. For high-assurance systems, its usage 
is recommended earlier in the development and debugging when the number of logical 
faults is higher than in the later stages and when their removal is the most cost effective. 

We experimented with using a purely random search to find a known bug in DEOS 
using JPF; however, the counterexample was considerably longer and took more time 
and memory to produce than with using the coverage heuristics (described later). See 
also section 7.7 about the LURCH system, which employs random search and has 
performed well in certain cases. 
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5.2 Model Checking vs. Testing 
Model checking is often claimed to have an advantage over testing since all possible 
behaviors of a system are analyzed, the idea being that model checking might catch 
subtle errors that testing could miss (Figure 4). 

Test ing Model Checking

 

Figure 4  Model Checking vs. Testing 
 
The first work linking model checking and testing was to use model checking for test-
case generation (Callahan, Schneider, and Easterbrook, 1996; Gargantini and Heitmeyer 
1999). 

One notable difference between testing and model checking is that model checking is 
more suited to analysis of concurrent and reactive programs because it has full control 
over the scheduling of processes, threads, and events, which is not typically the case in 
testing. Also, because a model checker stores the program states that it has visited (to 
stop it from getting lost by repeating itself), it can be more efficient in covering the 
behaviors of a program (Park et al. 2000). 

While this is true in theory, real systems tend to have large state spaces, and it is 
impossible to store all the states of the system. That is the bad news. The good news is 
that, in case studies involving real systems, errors can usually be revealed by 
considering just a few subtle interactions, rather than a multitude of complex ones. 
Looking at only part of the state space (or behaviors) can therefore be effective for 
finding errors when using a model checker to analyze a real program. 
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5.3 Coverage for Model Checking 
When model checking is incomplete and no errors are reported, we would like to gain 
information about what aspects of the program’s behavior have been checked. To do 
this, we can use some standard (and some not-so-standard) test coverage criteria. 

Test coverage provides a measure of how well the testing framework actually checks the 
application software and how can we know when to stop testing. The situation with a 
model checker is similar. We want to know what parts of the state space were covered. 
There are different coverage levels that we can measure (Cornett 1996): 

 Function Coverage 

 Statement Coverage 

 Decision Coverage 

 Condition Coverage 

 Multiple Condition Coverage 

 Condition/Decision Coverage 

 Modified Condition/Decision Coverage 

 Path Coverage 

 Branch Coverage 

During testing, structural code coverage measures such as decision (or branch) coverage 
are used to obtain confidence that a program has been adequately tested. The reasoning 
is that if a program structure is not covered, then there is no basis to argue that that part 
of the program is error-free. For example, the Federal Aviation Administration requires 
software testing to achieve 100% modified condition/decision coverage (MC/DC) in 
order to certify level A criticality software for flight in RTCA document DO-178B (RTCA 
website). MC/DC coverage requires that all Boolean conditions within a decision 
independently affect the outcome of the decision. It was designed to achieve branch 
coverage of object code (compiled source) and provide confidence that logic errors do 
not occur in a program. 

Similar coverage measures can be used for model checking. On the face of it you might 
wonder why coverage during model checking is of any value, since model checkers 
typically cover all of the state space of the system under analysis, hence by definition 
covering all the structure of the code. However, calculating coverage serves the same 
purpose as during testing: it shows the adequacy of the (partial) model checking run. 
The output of a model checker now indicates either that an error was found and 
provides a path that shows how to get to it, or, if no error is found, returns a coverage 
measure that testing engineers can interpret as is done now. 

The real question is figuring out why this might be useful. A model checker that can 
calculate traditional structural coverage could help answer at least one interesting 
question that many people, including the FAA, have been struggling with for some time: 
How good is the MC/DC coverage measure at finding safety-critical errors? (Dupuy 
and Leveson 2000). In general, it is not known whether a partial model-checking result 
that includes 100% MC/DC coverage provides much of a guarantee of error-free 
operation. Note that achieving a certain structural coverage is not known to be useful in 
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finding certain types of behavioral errors, such as timing/scheduling errors—exactly the 
ones model checking is good at finding.  

Model checkers are particularly suited to finding errors in concurrent programs, but 
many traditional coverage criteria were developed for sequential programs. Therefore, it 
is not clear that tracking coverage of these metrics during model checking would be 
useful. It may be more appropriate to investigate coverage measures more suitable to 
concurrent systems, such as all-DU-paths for concurrent programs (Yang, Souter, and 
Pollock 1998).  

A more interesting approach may be to develop suitable behavioral coverage measures. 
For example, “relevant path coverage” might be used to indicate coverage of the paths 
relevant to proving a property correct. Using behavior-based coverage metrics, it should 
be clear that program abstraction techniques, such as slicing and conservative 
abstraction, still provide full coverage even though some paths are not completely 
checked.  

A model checker, during normal execution, can calculate coverage metrics that can be 
used to evaluate how the paths executed by the model checker rate against established 
testing criteria. For example, the SPIN model checker calculates statement coverage and 
reports unreachable code.  

5.4 Directed Model Checking 
Directed model checking addresses the state explosion problem by using guided or 
heuristic search techniques during state space exploration (Edelkamp, Lluch-Lafuente, 
and Lee 2004; Edelkamp 2006). It borrows heavily from well-known AI techniques to 
enable the model checker to better home in on error states while searching just a portion 
of the state space, and thereby avoid the problem of state space explosion. Here we will 
describe different types of heuristics that may be used during directed model checking. 

5.4.1 Property-Specific Heuristics 

Property-specific heuristics are based on specific properties such as: 

 Deadlock: Maximize number of blocked threads 

 Assertions and exceptions: Minimize distance to assertions and throws of explicit 
exceptions 

 Language-specific size constraints such as overflow of a particular buffer 

 Resource consumption: e.g., attempts to exceed the limit on open file handles 

A lot of the work on model checking using heuristics largely concentrates on property-
based heuristics. Selecting such heuristics in practice is not easy, particularly when the 
model checker is applied to a large concurrent program with many types of errors (e.g., 
assertions, potential for deadlocks, uncaught exceptions). Also, it is not always possible 
to know during model checking how close you are to a property violation. 
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5.4.2 Structural Heuristics 

Structural coverage measures can be used during directed model checking to improve 
the state space coverage (Groce and Visser 2002). Rather than looking for a particular 
error, it may be best to try and explore the structure of the program systematically, 
looking for any kind of error. As noted before, this is the motivation behind coverage 
metrics in testing. For example, you can guide the model checker to pick parts of the 
state space to analyze based on structural coverage of the code that would generate 
those state spaces. A simple example would be to consider only statement coverage: If 
the model checker can next analyze a program statement that has never executed, versus 
one that has, then it picks the new one. This simple example is a greedy algorithm which 
may not work. We will describe some of the structural heuristics that have been found to 
be useful for model checking. 

5.4.2.1 Code Coverage Heuristics 

In many industries, 100% branch coverage is considered a minimum requirement for test 
adequacy (Bezier 1990). Branch coverage requires that at every branching point in the 
program all possible branches be taken at least once. Calculating branch coverage 
during model checking can be done by keeping track of whether at each branch point all 
options were taken. JPF goes further than that. It also keeps track of how many times 
each branch was taken and considers coverage separately for each thread created during 
the execution of the program. JPF can produce detailed coverage information when it 
exhausts memory without finding a counterexample or searching the entire state space. 
You can use this data as heuristic to prioritize the exploration of the state space.  

One approach to using branch coverage metrics would be to simply use the percentage 
of branches covered (on a per-thread or global basis) as the heuristic value. This is 
referred to as the %-coverage heuristic. However this heuristic is likely to fall into local 
minima, exploring paths that cover a large number of branches but do not in the future 
increase coverage. Instead, a slightly more complex heuristic proves to be more useful: 

 States covering a previously untaken branch receive the best heuristic value. 

 States that do not involve taking a branch receive the next best heuristic value. 

 States covering a branch already taken can be ranked according to how many times 
that branch has been taken, with worse scores assigned to more frequently taken 
branches. 

You can create many variations of such branch-counting heuristics. Counts can be taken 
globally (over the entire state space explored) or only for the path by which a particular 
state is reached. The counts over a path can be summed to reduce the search’s sensitivity 
to individual branch choices. 

Such heuristics can be more sensitive to data values than coverage measures 
traditionally used in testing, since they go beyond the simple 0-1 sensitivity of all-or-
nothing coverage. 
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Note also that the branch-counting heuristics can be used in dynamic test case 
generation (Korel 1990) by using the heuristic function to optimize the selection of test 
cases—for example, by only picking cases in which the coverage increases. 

The practical effect of this class of heuristic is to increase exploration of portions of the 
state space in which nondeterministic choices or thread interleavings have resulted in 
the possibility of previously unexplored or less explored branches being taken. In 
theory, all of the variations of the branch-counting heuristic mentioned above can 
produce significantly different results on real programs, but in experimental results 
using JPF, only global vs. path had any observable impact. Storage of the visited states 
could also have a great impact on the success of such heuristic searches. While model 
checking DEOS we discovered that without state storage these heuristics failed to find a 
counterexample for the known bug before exhausting memory—the queue of states to 
explore became too large and exhausted the memory. 

5.4.2.2 Thread Interleaving Heuristics 

A different kind of structural coverage is based on maximizing thread interleavings. 
Traditional testing often misses subtle race conditions or deadlocks because generally 
the scheduler cannot be controlled directly. One way to expose concurrency errors is to 
reward “demonic” scheduling by assigning better heuristic values to states reached by 
paths involving more switching of threads. In this case, the structure we attempt to 
explore is the dependency of the threads on precise ordering. If a non-locked variable is 
accessed in a thread, for instance, and another thread can also access that variable 
(leading to a race condition that can result in a deadlock or assertion violation), that path 
will be preferred to one in which the accessing thread continues onwards, perhaps 
escaping the effects of the race condition by reading the just-altered value. 

One heuristic that has been shown to be effective is calculated by keeping a (possibly 
size-limited) history of the threads scheduled on each path: 

 At each step of execution, append the thread just executed to a thread history. 

 Pass through this history, making the heuristic value that will be returned worse 
each time the thread just executed appears in the history by a value proportional to: 

 How far back in the history that execution is, and 

 The current number of live threads. 

Application of JPF with this interleaving heuristic to the famous dining philosophers’ 
example shows that this interleaving heuristic can scale to quite large number of 
threads. While DFS fails to uncover counterexamples even for small problem sizes, the 
interleaving heuristic can produce short counterexamples for up to 64 threads. 

The key difference between a property-specific heuristic and a structural heuristic can be 
seen in the dining philosophers’ example where we search for the well-known deadlock 
scenario. When increasing the number of philosophers high enough (e.g., 16) it becomes 
impossible for an explicit-state model checker to try all the possible combinations of 
actions to get to the deadlock, and heuristics (or luck) are required. A property-specific 
heuristic applicable here is to try and maximize the number of blocked threads, since if 
all threads are blocked we have a deadlock (most-blocked heuristic). Whereas a 
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structural heuristic may be to observe that we are dealing here with a highly concurrent 
program—hence it may be argued that any error in it may well be related to an 
unexpected interleaving —we use the heuristic to favor increased interleaving during 
the search (interleaving heuristic). Although experimental results are by no means 
conclusive, it is still worth noting that for the dining philosophers’ example the 
structural heuristic performs much better than the property-specific heuristic. Another 
interesting observation is that turning the state storage off with the interleaving heuristic 
mentioned above for both the dining philosophers’ example and the Remote Agent 
example described in section 9.1 does not seem to change the results significantly—we 
found only minor variations in the length of counterexamples and number of states 
searched. In contrast, turning the state storage off for the most-blocked heuristic seems 
to cause previously successful searches to become unsuccessful. 

5.4.2.3 Thread Preference Heuristic 

This is similar to the thread interleaving heuristic mentioned above except that it focuses 
on a few threads that may be suspected to harbor an error. To do this, it relies on the 
knowledge of what parts of the system are “interesting.” For example, when JPF was 
applied to the Remote Agent example, the race detection algorithm was used in a first 
run of the model checker with the BFS search strategy to identify a number of potential 
race conditions. Allowing the race detection to run for 3 minutes revealed that the 
Executive and Planner threads had unprotected write accesses to a field. The threads 
involved in the potential race conditions were then used to guide a thread-preference 
search with a similarly small queue, and a counterexample was quickly detected. This 
approach scaled to larger versions of the Remote Agent than other heuristics could 
handle. This is a different flavor of structural heuristic than those presented previously. 
It relies on specific knowledge of the program’s behavior that can be observed by the 
model checker (which branches are taken, which threads are enabled, etc.) during the 
execution of the program. In certain cases, such as the one described above, this 
knowledge can be automatically extracted by the model checker itself. Such additional 
knowledge can, as expected, aid a guided search considerably. 

5.4.2.4 Choose-free Heuristic 

With the choose-free heuristic, the model checker first searches the part of state space 
that does not contain any non-deterministic choices. This is particularly useful when 
abstractions based on over-approximations of the system behavior are used for reducing 
the size of the state space to allow more efficient model checking. A variation of this 
heuristic gives the best heuristic values to the states with the fewest nondeterministic 
choice statements enabled, allowing the choose-free state space to be searched first but 
continuing to the rest of the state space otherwise (this also allows choose-free to be 
combined with other heuristics). 
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5.4.3 User-Guided Searches 

Traditionally heuristics are often problem-specific. Structural heuristics and property-
specific heuristics of general utility are provided as built-in features of model checkers 
such as JPF, but it is often essential to allow users to also craft their own heuristics. 
Model checkers like JPF allow users to define their own heuristics which can take 
advantage of the user’s special knowledge of the program being analyzed. 
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6 Program Design Guidelines for 
Model Checking 
  

Most significant software development projects use some kind of design and coding 
guidelines. There exist many such guidelines, some including tens or even hundreds of 
rules covering almost all aspects of development—from the use of white spaces, naming 
conventions, and comments to recommendations on what specific language features to 
use or avoid (MISRA 2004; Meyers 2005; Sutter 1999; Sutter 2004). The choice of 
language and also the type of application that is developed obviously play an important 
part in the set of rules that are applicable in practice. Some rules may contradict or be 
inconsistent with other rules within the same guideline document. Therefore developers 
are often forced to follow some of the rules and ignore others. With no automated 
checking of compliance, many violations of these guidelines often go unnoticed.  

There does not seem to be a consensus on what makes a good guideline in general. Even 
less obvious is the effect of some of these guidelines on software verifiability. 
(Holzmann 2006) proposes 10 rules that could have measurable effect on software 
reliability and verifiability. He argues that although the proposed small set of rules 
cannot be all-encompassing, setting an upper bound can increase the effectiveness of the 
guideline. In this section we describe a number of recommended design and coding 
guidelines which can be used effectively to tame the state explosion problem and also to 
reduce the amount of effort that is required to use a model checker to verify properties 
of interest. 

Section 6.1 starts by listing various C/C++ programming language features and 
implementation idioms which expand the state space of a program. In that sense, these 
features (like multiple inheritance) are not necessarily indicative of bad design, but their 
use should be limited to enable model checking, and also to improve testability. It is also 
important to design applications to be state aware (e.g., avoid redundancy or 
unnecessary concurrency). Section 6.2 lists such state-reducing measures. These 
measures are by no means model-checking specific; they represent general “best design-
practices” which have the side effect of making systems more suitable for model 
checking.  

6.1 C/C++ Modeling and Translation Constraints 
This section lists constructs and idioms in C and C++ which should be avoided because 
the corresponding models in other languages (e.g., Java, Promela) can have negative 
impacts on the memory consumption in general, and state space in particular. Some 
constructs are clearly considered to be outside of the modeled language (i.e., would be 
too expensive to model in a more abstract language like Java). The main focus is on state 
space efficiency; runtime efficiency, if addressed, is a secondary concern. 
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6.1.1 Pointer Arithmetic 

C and C++ provide the ability to modify a pointer’s target address with arithmetic 
operations. This is used, for example, to index arrays. 

 
 

MyObject* p = …  
…   
p = p + 42; 

For model checkers such as Java whose modeling notations do not support these 
operations directly, these operations can be problematic to model. For example a pointer 
variable can be mapped directly to a Java reference unless any pointer operations are 
performed on it anywhere in the code (e.g., pointer addition or taking its address). They 
require creation of explicit “C-pointer” objects with additional state (base, offset). We 
also need to create a model of the memory and the platform in order to be able to 
effectively model such arithmetic operations. While this can be supported in practice, it 
can significantly increase the complexity of the model and hence the size of the state 
space.  

6.1.2 Primitive Type Casting 

C/C++ allows you to cast between totally unrelated types. This can be problematic for 
model checking. Avoid type casting between unrelated types and in particular primitive 
types. For example, 

 
 

long l;
… 
char* c = (char*)&l;
… 
c[i] = x; 

Casting between unrelated types requires overhead for keeping values consistent. For 
primitive types, this also requires creating objects instead of primitives and explicit 
modeling of the memory and the platform. In languages like Java you cannot even use 
the immutable standard box types like java.lang.Integer. Furthermore, operations on 
the primitives have to be turned from direct bytecode instructions into method calls, 
creating more overhead. 

6.1.3 Unions 

Unions in C and C++ are object overlays—aggregate quantities like structs, except that 
each element of the union has offset 0, and the total size of the union is only as large as is 
required to hold its largest member (Kernighan and Ritchie 1998). 
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union U {
  unsigned long 
l; 
  char c[4]; 
} 
 
U u; 
u.l = X; 
… 
u.c[0] = Y; 

Unions are not supported by languages like Java. The translation has to generate 
different objects for the union itself and all its fields, plus the code to keep their values 
consistent. This results in additional overhead and can increase the state space 
considerably. 

6.1.4 Untyped Allocations 

In C/C++ untyped allocations such as malloc, calloc, and realloc can easily be used to 
create overlays, which again require translation overhead to keep the corresponding 
non-overlaid objects consistent. 

 
 

char* m = (char*) malloc(…);
… 
A* pa = (A*)m; 
B* pb = (B*)m; 

Most coding guidelines for safety-critical software discourage the use of such dynamic 
memory allocations, particularly after initialization. Such memory allocations and the 
corresponding garbage collections can result in unpredictable behavior that could 
significantly affect both the performance and the verifiability of the code. 

Applications that operate within a fixed, pre-allocated area of memory can avoid many 
of the problems associated with mishandling of memory allocations or de-allocations 
such as: 

 Forgetting to free the memory 

 Using memory after it was freed 

 Attempting to allocate more memory than physically available 

 Overstepping boundaries on allocated memory 

These applications are much easier to verify for memory-related properties and to prove 
that they can always operate within the available resource bounds. 

6.1.5 Unconditional Jumps 

Jumps which are not strictly upwards in the block hierarchy can require extensive 
control-flow manipulation, including creation of redundant code, and should be 
avoided if possible. Such jumps add considerable modeling overhead for some model 
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checkers. For example, gotos are not directly supported in JPF, but SPIN does handle 
them by default: 

 

 

…
if (…) { 
  … 
  LABEL: 
  … 
} else { 
  … 
  goto LABEL;
  … 
} 
 

6.1.6 Multiple Inheritance 

In C++, multiple-inheritance occurs when a class inherits from more than one parent. 
For example: 

 
 

class B {
  … 
  virtual void foo(); 
  … 
}; 
 
class C : public B { 
  … 
  virtual void foo(); 
  … 
}; 
 
class A : public B, public C 
{ 
  … 
}; 
 

Multiple inheritance used with several non-pure virtual bases cannot be translated into a 
simple class hierarchy in modeling languages such as Java, and might require significant 
delegation overhead to reach base class fields and virtual methods. The presence of 
multiple inheritance also requires explicit control about the constructor calling sequence, 
and therefore cannot be modeled with constructors in languages such as Java. 

6.1.7 Use of setjmp() and longjmp() 

In C/C++, setjmp() saves the contents of the registers at a particular state in the 
program and longjmp() will restore that state later. In this way, longjmp() “returns” to 
the state of the program when setjmp() was called. 
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In general these functions are problematic for C++ because they do not support C++ 
object semantics. In particular, they do not ensure the proper destructor calls and so 
objects may not be cleaned up properly, leaving the system in a bad state. 

Using these functions may also degrade performance by preventing optimization on 
local variables. For C++ exception handling, try/catch constructs are recommended 
instead. 

 

 

jmp_buf save;
... 
int ret = setjmp(save); 
if (ret == 0) { 
  // first time action  
  ... 
  longjmp(save, SOME_ERROR); 
  ... 
} else if (ret == SOME_ERROR) {
  // jump back action 
} 
... 
 

 

For model checking in particular, non-hierarchical long jumps are difficult to model 
with modeling languages like Java. These functions need to do register restoration 
which requires modeling of registers and their related operations, adding considerable 
overhead to model-checking effort. 

6.1.8 Signal Handlers 

In some operating systems, signal handlers are executed on a thread stack; they 
“overlay” the current thread execution (which may be used, for example, in combination 
with setjmp/longjmp to create user-domain lightweight threads). The thread model 
supported by modeling languages often cannot fully model signal handlers. This is 
certainly true in the case of a language like Java. Real-Time Specification for Java tries to 
address this to some extent, but it is not a complete solution. 

6.1.9 Limit the Use of Pre-processor Directives 

The C pre-processor is powerful, but unrestricted use of it can lead to code that is hard 
to understand and analyze. Limit its use to inclusion of header files and simple macro 
definitions. Avoid features such as token pasting, variable argument lists (ellipses), 
recursive macro calls, and macros expanded into incomplete syntactic units. 

The use of conditional compilation directives and complex macro definitions must also 
be kept to a minimum. These make the job of modeling more complicated because they 
have to be translated into the modeling notations which often do not have similar built-
in capabilities. 
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6.2 State-Reducing Design Measures 
The measures listed in this section address reduction of the model checking relevant 
state space by dealing with a reduction of implementation-inflicted complexity. 

6.2.1 Reduce Concurrency 

From a model-checking perspective, the searched state space consists of all possible 
thread-state combinations, which implies that the level of concurrency has the biggest 
impact on state space size. As a consequence, reducing concurrency can be considered as 
the premier measure to ease model checking. 

6.2.2 Number of Threads 

Threads can be a useful abstraction and implementation mechanism to partition 
independent program actions. However, when there is coordination (or interference) 
between these threads, the required synchronization mechanisms increase the time, 
increase the state space, and introduce potential liveness and safety problems.  

Some of these cases can be reduced with multiplexing patterns; for example, separating 
asynchronous event emitters from a synchronous event processor by means of an event 
queue mechanism—i.e. combining sequenced operations inside of one dedicated thread 
(the event processor) instead of using explicit synchronization between several threads 
to enforce the sequencing. 

6.2.3 Number of Interleavings 

Besides the raw number of threads, the state space is affected by the number of potential 
interleavings of these threads. While there exist automated techniques (partial-order 
reduction) to reduce these interleavings, most model checkers include some kind of 
interface to denote atomic sections (code which does not interfere with other threads). 
Previous versions of JPF supported two primitives: Verify.beginAtomic() and 
Verify.endAtomic(). They were used to mark a section of the code that would be 
executed atomically by the model checker so that no thread interleavings were allowed. 

 

Verify.beginAtomic();
 
... // code without side effects outside this thread 
 
Verify.endAtomic(); 
 

 
These calls are deprecated in the current version of JPF, which by default supports 
partial-order reduction instead. Use the Verify.beginAtomic and Verify.endAtomic 
primitives with care because a deadlock will occur when a thread becomes blocked 
inside of an atomic section. 
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6.2.4 Use Finite-State Space Abstractions 

In order to successfully apply explicit-state model checking, defects must be detectable 
in a sufficiently small state space. This can be achieved either by means of heuristics that 
constrain the way the state space is searched, or by means of abstractions closing the 
state space (this was discussed in detail in Chapter 3). While the model checker can 
automatically apply certain abstractions, others should be used explicitly in the target 
program. 

The most important state space reductions of the last category use specialized types to 
reflect value constraints. For example avoid using “int” and “long” types where the 
whole range of values is not needed. If a variable v can only take values -1, 0, or 1, then 
we can declare it as an enumerated type with only those three values. This helps the 
model checker limit the range of values that it needs to check for. 

6.2.5 Counters 

Counter variables are commonly used in many computer applications for different 
purposes. Here is a typical example where a variable is used to measures the progress of 
some activity of interest: 

 

int progress, previous;
... 
progress++; 
... 
if (previous < progress) { 
  previous = progress; 
  ... 
} 

 
If the exact value of the progress variable or the entire range of its values is not really 
required for checking the property of interest, then the use of this variable can cause 
unnecessary (potentially infinite) state space expansion. In this case, the progress 
variable can be reduced to a Boolean variable: 

 

bool progress = false;
... 
progress = true; 
... 
if (progress) { 
  progress = false; 
  ... 
} 

 
This modification immediately cuts down the number of states that need to be explored 
for this piece of code from ((2*MAXINT)+1)

2
 to only two possibilities: the progress 

variable taking only the value of true or false. Such small modifications can lead to 
exponential improvements in memory and time for a model checker. 
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6.2.6 Timers 

While time values usually cannot be reduced in the target system, their usage can be 
encapsulated as an abstraction which can be replaced easily (e.g., by a non-deterministic 
choice) during model checking. 

The following code shows two typical operations involving time implemented in 
C/C++: calculating a time delta between two execution points, and logging the current 
time at a specific point in the execution: 

 

// time delta 
struct timeval t1, t2; 
struct timeval td, tdmax = { MAX_SEC, MAX_USEC }; 
... 
gettimeofday(&t1, NULL); 
... 
gettimeofday(&t2, NULL); 
timersub(&t2, &t1, &td); 
if (timercmp(&td, &tdmax, >) { 
  ... 
} 
 
... 
// timed log 
struct timeval now; 
gettimeofday(&now, NULL); 
log(&now, ...); 

 
One way to dramatically reduce the state space of this code during model checking is to: 

 Replace the time variables with non-deterministic choices (e.g., a simple integer 
whose value can be controlled by the model checker and possibly kept to a restricted 
range), and 

 Replace all time comparisons with a simple non-deterministic Boolean choice. 

The problem with doing this across the entire program is that it may involve 
modifications to many parts of the code—everywhere the corresponding variable has 
been used or referenced. This is a time-consuming task for realistic systems and is error-
prone. 

The alternative is to create an abstraction for the timer, a class called StopWatch which 
encapsulates all the relevant operations involving time. The code above can be reduced 
to the following: 
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// timed delta 
StopWatch sw; 
 
sw.start(); 
... 
sw.stop(); 
if (sw.exceeded(MAX_MSEC)) {
  ... 
} 
// timed log 
logTime();  
log(...); 

 
Now changes to the way time is modeled are all localized to the StopWatch class. You 
can switch between the real and modeled implementations with minimal effort, or even 
exclude timers from the model-checking process if necessary. As mentioned in the 
previous chapters, this approach also localizes the necessary instrumentation. For 
example, we only need to insert assertions in the methods provided by the StopWatch 
class rather than sprinkling them all across the target application. 

6.2.7 Primitive Type Abstractions 

An effective way to reduce the state space of a program is to replace the primitive types 
with the corresponding abstractions that encapsulate all the possible operations that are 
performed on these types. 

These abstractions allow us to replace the actual primitive variables or the operations 
involving those with the non-deterministic choices with restricted range of values. This 
can cut down the number of states that has to be covered by the model checker 
dramatically. 

As an example, consider the following class which encapsulates different operations that 
can be carried out on doubles. 

 

class Double {
  double m_value; 
public: 
  Double () { m_value = NAN; } 
  Double (double value) : m_value (value){} 
  ... 
  Double operator+ (double value) { ... } 
  Double operator/ (double value) { ... } 
  Double operator- (double value) { ... } 
  Double operator* (double value) { ... } 
  ... 
}; 

 
Here is the implementation for the operator==() which implements the real behavior of 
the operator: 
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  int operator==(double value) {
    return m_value == value; 
  } 

 
With this abstraction it would be easy to reduce the potentially infinite state space 
required to model check the equality operator “==” with a binary choice (true or false)—
just replace the “m_value == value” with “chooseBoolean()” in the body of the 
method. Appendix A shows the full C++ implementation of the Double class as an 
example. 

The additional advantage of such abstractions is that they can provide convenient places 
for instrumentation. For example, in order to check whether a double number is valid 
and whether or not an operation results in overflow or underflow, instead of spreading 
the instrumentation all over the application code you can simply add the right 
instrumentation to the corresponding operator definition in this class, as shown below: 

 

  Double operator+ (double addend) {
    assert(!isnan(addend)); 
    assert(!isnan(m_value)); 
    assert(!isinf(addend)); 
    assert(!isinf(m_value)); 
    assert(...); 
    ... 
    return Double(m_value + addend); 
  } 

 

6.3 General State-Relevant Design Principles 
Even though they have less dramatic impact, there are a number of general object-
oriented design principles which help to reduce model checker relevant state. 

6.3.1 Avoid Redundancy 

While not every form of redundancy is as bad from a verification perspective as it is 
from a maintenance point of view, behavioral redundancy to re-create (local) state can 
impose problems because the model checker does not distinguish between function local 
and object state. For example: 
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class A { 
  void f (...) { 
    X x(...); 
    ... // do something with x w/o changing it 
  } 
 
  void g (...) { 
    X x(...); 
    ... // do something else with x w/o changing it 
  }   
}; 

  
We can change the above example by factoring out the declaration of x and turning it 
into object state. 

 

class A {
  X x; 
  ... 
  void f(...) { /* use x */ } 
  void g(...) { /* use x */ } 
}; 

 
Another harmful example of redundancy can occur with redundant aggregates that 
could be turned into delegation objects. For example, consider the following example: 

class A { 
  X x; 
  B b; 
  .. 
  void f (..) { 
    x.modify(); 
    b.update(x); 
  } 
}; 

class B {
  X x; 
  A a; 
  .. 
  void g (..) { 
    x.modify(); 
    a.update(x); 
  } 
}; 
 

 
 
Classes A and B are creating instances of X, A, and B as data members. These redundant 
instances are usually a result of program extension—initially attempting to keep 
changes local (to a function member or class), but later realizing that the changes are 
required in a larger scope (a whole class or set of classes). We can modify this example 
by factorizing X, A, and B data members and turn them into delegation objects, as 
follows: 
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class A { 
  X *x; 
  void f (...) { 
    x->modify(); 
    b.update(x); // update modified to take a reference 
  } 
}; 
 
class B { 
  X *x; 
  void g (...) { 
    x->modify(); 
    a.update(x); 
  } 
}; 
 
... 
X *x = new X(...); 
A *a = new A(...); 
B *b = new B(...); 
a-> setX(x); b-> setX(x); 
 

 
This assumes that A and B are used within the same thread; otherwise, you need to 
consider the additional synchronization overhead if X is shared between two different 
threads. 

6.3.2 Use Polymorphism 

Programs, especially those converted from non-OOP languages like C, sometimes use 
state where they should use inheritance. For example, 

 

class A { 
  int type; 
 
  A (…) { 
    type = TYPE_A; 
    … 
  } 
 
  void foo(…) { 
    … 
    if (type == TYPE_A) 
      … /* doAStuff */ ; 
    else if (type == TYPE_B) 
      … /* doBStuff */ ; 
    … 
  } 
}; 
 

class B : public A { 
  B (…) { 
    type = TYPE_B; 
    … 
  } 
  … 
}; 
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The variable type is used to explicitly store the type of an instance of class A or B. It is 
initialized in the constructors of both classes and is used in the A::foo() method to 
determine the exact type of the object so that the appropriate operations are carried out. 

Besides being error prone (type initialization, branch completeness) and breaking 
fundamental object-oriented abstraction rules (base classes should not have to know 
about their concrete derived classes), this produces more code (the branches) and more 
data (type fields) that have to be handled by the model checker. 

You can use the inheritance mechanism in C++ to do this more elegantly, as shown 
below: 

 
 

class A { 
  virtual void foo(…) {
    … /* doAStuff */ 
  } 
}; 

class B : public A { 
  virtual void foo(…) 
{ 
    … /* doBStuff */ 
  } 
}; 

We have observed this problem while model checking our SAFM case study, (section 
9.4), which contained a number of bugs. The types of 21 derived classes were 
distinguished by looking at a string “name” data member which was declared in the 
base class and was set when the objects of those classes were instantiated. Every time it 
needed to perform one of two mutually exclusive operations based on the type of the 
object, a complex conditional statement involving object name comparisons was used to 
decide which one to perform. 

We modified the code to use polymorphism as suggested in this guideline, which in 
turn reduced the complexity of the code. After the modification we model checked the 
code using JPF and noticed significant reduction in the number of byte codes executed, 
the memory consumed, and the execution time before it detected a given bug. 

6.3.3 Leverage Model-Based Design 

Model-based design provides useful hints of how a large system can be reduced so that 
its state space becomes searchable. If not inherently visible in the design (for example, by 
means of using a “State” design pattern), the model-relevant information should at least 
be included as comments. 

6.3.4 Finite State Machines 

A Finite State Machine (FSM) is one of the most suitable models for formal checks, 
especially for concurrent systems. However, FSMs can have problems with inheritance 
(the state model can change in derived classes) if state aspects are not factorized (e.g., 
with the State design pattern). 
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6.3.5 Use Platform-Independent Libraries and Abstraction Layers 

Contemporary libraries can significantly exceed the size and complexity of applications. 
In practice, the application model or environment model will have to model some of 
these libraries (especially the ones without source code availability). We recommend the 
use of platform-independent libraries, such as POSIX (especially pthreads), to easily 
model complexity and increase opportunity to reuse models. 

6.3.6 Limit the Scope of Data Declarations 

Limiting the scope of data declaration at the smallest possible level is consistent with the 
well known principle of data hiding. It stops one module from inadvertently referencing 
and modifying data values which are only meant to be used by another module. It also 
improves the clarity of the code. 

Limiting data declaration scopes improves model checking because it reduces the 
number of data elements and statements that must be tracked during analysis in order 
to verify properties of interest. 
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7 Model Checkers 

7.1 Java PathFinder 
Java PathFinder (JPF) is a model checker that has been developed as a verification and 
testing environment for Java programs (Figure 5). It is available as open source at 
SourceForge.net (JPF website). It consists of a custom-made Java Virtual Machine (JVM) 
that interprets bytecode, combined with a search interface to allow the complete 
behavior of a Java program (including all interleavings of concurrent programs) to be 
analyzed. JPF itself is implemented in Java and its architecture is highly modular and 
extensible to support rapid prototyping of new features. JPF works at the bytecode level, 
and therefore it can uncover errors at both source and bytecode levels. 

 
Figure 5  Java PathFinder Architecture 

7.1.1 Property Specifications 

The most straightforward way to specify and check simple safety properties in JPF is to 
use Java assertions inside the application under analysis. This allows the specification of 
properties that only depend on the application data values (e.g., parameter value 
intervals). Violations are caught by JPF. The drawbacks of this method are that it 
requires access to the application sources, and that it can significantly increase the state 
space if the property requires evaluation state itself (e.g., for properties implemented as 
automatons). 

The other way to specify properties is by using gov.nasa.jpf.Property or 
gov.nasa.jpf.GenericProperty instances to encapsulate property checks. 
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public interface Property extends Printable {
boolean check (Search search, VM vm); 
String getErrorMessage(); 
} 

The user typically creates an instance of such a class and provides an implementation for 
its check() method which does the main work for checking the property. The check() 
method is evaluated after each transition. If it returns false and termination has been 
requested, the search process ends, and all violated properties are printed (which 
potentially includes error traces). 

JPF comes with generic Property classes for the following properties: 

 No Deadlocks 

 No Assertion Violation 

 No Uncaught Exceptions (i.e., not handled inside the application) 

Another way of specifying properties is through the use of two listener classes: 
gov.nasa.jpf.SearchListener and gov.nasa.jpf.VMListener. The listeners can 
subscribe to events during the search, making JPF easily extensible. They can be used to 
implement more complex checks that require more information than what is available 
after a transition is executed. The rich set of callbacks enables listeners to monitor almost 
all JPF operations and translate them into internal state. 

Property objects can be configured statically or dynamically through a programmatic 
API. To activate checking for these properties, add the corresponding class names to the 
colon-separated list of class names specified under search.properties in a JPF 
configuration file: 

 

search.properties=\
    gov.nasa.jpf.jvm.NotDeadlockedProperty:\ 
    gov.nasa.jpf.jvm.NoAssertionViolatedProperty:\ 
    gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty:\ 
    x.y.z.MyNewProperty 

 
Although JPF previously supported LTL checking, this feature is no longer supported. 

7.1.2 Environment Modeling 

In JPF, Java class files can be processed in two different ways: 

 As ordinary Java classes managed and executed by the host JVM (e.g., standard Java 
library classes, JPF implementation classes) 

 As “modeled” classes managed and processed (verified) by JPF 

We have to clearly distinguish between these two modes. In particular, JPF’s “Model” 
layer has its own class and object model, which is completely different than and 
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incompatible with the hidden class and object models of the underlying host JVM 
executing JPF. 

Each standard JVM supports a Java Native Interface (JNI), that is used to delegate 
execution from the JVM-controlled bytecode down into the platform-dependent native 
layer (machine code). This is normally used to interface certain functionalities such as 
I/O or graphics to the platform OS and architecture. JPF provides an analogous 
mechanism to lower the “execution” level in JPF from JPF-controlled bytecode into JVM-
controlled bytecode. This mechanism is called Model Java Interface (MJI). It supports the 
creation of dedicated classes to be executed by the underlying JVM rather than JPF. Such 
classes are not model checked by JPF. 

MJI offers a wide range of applications. These include the following:  

 Interception of native methods including calls to native libraries: We can easily 
model and abstract the operation of these libraries. 

 Interfacing of JPF system-level functionality: Some system-level functions of 
standard library classes (especially java.lang.Class and java.lang.Thread) must 
be intercepted even if they are not native, because they have to affect the JPF internal 
class, object, and thread model. 

 Extending the functionality of JPF without changing its implementation. 

 State space reduction: By delegating bytecode execution into the non-state-tracked 
host JVM, we can cut off large parts of the state space. This improves the efficiency 
and scalability of the analysis. 

 Collecting information about JPF’s state space exploration. 

Software model checking is all about making the right choices to guide the analysis tool 
(in this case, JPF), to systematically explore interesting system states within the resource 
constraints of the tool and execution environment. Many of these choices may be non-
deterministic—for example, what thread to schedule next or what the value is of the 
next floating point number that is entered as an input from the environment. 

Support for simple “random” data acquisition (using the gov.nasa.jpf.jvm.Verify 
interface) has been included in JPF since the beginning. For example, 
Verify.getInt(2) will non-deterministically return a value in the range 0-2, inclusive, 
which the model checker can then trap during execution. JPF tries all the possible values 
systematically. For more complex choices however (e.g., values for a data type with 
infinite set of values such as floating point numbers) a more powerful mechanism is 
required. To do this, JPF uses Choice Generators which allow us to use heuristics to make 
the set of choices finite and manageable. For example, you can choose to use the set of all 
floating point numbers within a given boundary, each separated by a delta value from 
the next. 

This mechanism is completely configurable and is decoupled from the rest of the system, 
allowing a lot of flexibility in guiding the search. Choice generators are the preferred 
mechanism for modeling the environment and can be implemented using MJI. This 
allows choice generators to act as test drivers for the model checker. 
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7.1.3 State Space Reduction  

JPF is a so-called explicit-state model checker, since it enumerates all visited states, and 
therefore suffers from the state explosion problem inherent in analyzing large programs. 
It also contains garbage collection, since a typical Java program will be infinite state 
(state size will grow infinitely) without garbage collection. 

Previous versions of JPF used a facility for marking blocks of code as atomic, using calls 
to Verify.beginAtomic() and Verify.endAtomic(). This is not supported in the 
latest version of the tool. Instead, it supports dynamic partial-order reduction by default, 
as a means of reducing the number of interleavings analyzed by the tool while checking 
concurrent code. 

7.1.4 Search and Partial Coverage 

JPF supports well-known search strategies such as BFS and DFS as well as various 
heuristic-based searches such as A*, Best-First, and Beam Search. You can sum a number 
of heuristics during the search, and set search depth as well as the number of elements 
in the priority queue associated with searches such as simple BFS or the heuristic 
searches described above. Dynamic annotations in the source code can cause the model 
checker to increase or decrease heuristic values. Previous versions of JPF supported the 
calculation of structural coverage (branch and statement coverage) during model 
checking; coverage could also guide heuristic search. The current version of the tool 
however does not support these features. There are plans to include such facilities in the 
tool in the future. 

7.1.5 Scalability 

Scalability of program model checkers such as JPF encompasses two aspects: 

 How large a program can be model checked, and 

 Once a defect has been detected, how readily meaningful debugging information can 
be derived from trace. 

How large a program JPF can model check is highly dependent on the structure and 
amount of nondeterminism in the application. For example, UI applications or certain 
Web applications which have a central control loop (i.e., reactive state machines) that 
reacts to user input or signals from the environment are amenable to model checking. 
We have applied JPF successfully to multithreaded Mars Rover software which was 
around ten thousand lines of code (10 KLOC.) We have also applied JPF successfully to 
multithreaded UI programs with 33 KLOC of application source plus many more lines 
of code in the libraries. At this point, the largest program checked by JPF is a commercial 
Web application of several hundred thousand lines of code, in which JPF found a 
deadlock involving about 20 threads; JPF executed more than 200 million byte code 
instructions of the target application in about 4 hours. Chapter 6 in this guidebook 
discusses ways to design applications to mitigate the scalability problem. 
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The second aspect of scalability is the ability to derive meaningful debugging 
information from an execution trace that manifests a defect. This sense of scalability can 
represent a severe limitation if the defect occurs long into the program execution. JPF 
provides limited capabilities here—for example, JPF’s DeadlockAnalyzer and 
ChoiceTracker, which are used in user interface applications to generate trace reports 
showing only user-input events. They are used also in analyzing Unified Modeling 
Language (UML) to limit trace reports to showing only state-machine environment 
events. 

7.1.6 Other Features 

JPF includes the capability to perform symbolic execution of Java programs, including 
complex data such as linked lists and trees. See section8.3.3 for details. 

7.2 SPIN 
SPIN (Holzmann 2004), winner of the 2001 ACM Software Systems Award, is one of the 
leading model checkers used for analyzing the logical consistency of concurrent and 
distributed systems, specifically of data communication protocols. Annual SPIN 
workshops have been held since 1995. The tool’s main focus is on proving the 
correctness of process interactions and not the internal computations of the processes. 
Processes represent system components that communicate with each other. 

7.2.1 Modeling Language 

The modeling language used for SPIN is called Promela (Process Meta Language). In 
fact, the name SPIN stands for Simple Promela Interpreter. Promela is a powerful C-like 
specification language with a variety of synchronization primitives that enables 
construction of models of distributed systems. Promela is a guarded command language 
for specifying possibly non-deterministic system behaviors in a distributed system 
design. It allows for the dynamic creation of concurrent processes which communicate 
synchronously or asynchronously via message channels. 

For example, the following Promela specification describes two processes P and Q that 
synchronize over a critical region. 
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active proctype P()
  { do::!crit[1] ->  
      { crit[0] = true  
        /* do critical section here … */
        ; crit[0] = false } 
    od  } 
 
active proctype Q() 
  { do::!crit[0] ->  
      { crit[1] = true  
        /* critical section */ 
        ; crit[1] = false }  
    od } 

 
A Promela model consists of declarations of types, channels, variables, and processes, as 
well as facilities for initializing the processes. For example, 

 

mtype = {MSG, ACK};
chan a,b,c = ... 
bool flag  
 
proctype Sender() { ... } 
 
proctype Receiver() { ... }
 
init { ... } 

 
A model consists of a set of concurrent processes, each in turn consisting of a set of 
atomic guarded actions or transitions. An action whose guard is true is called enabled 
and can be executed; otherwise, it is disabled and cannot be executed. Actions are not 
really executed concurrently; rather, they are non-deterministically interleaved, and this 
is used to model concurrency. Also processes do not have to terminate, which is useful 
when modeling reactive systems. 

In addition to the usual primitive data types found in other languages like C/C++ (e.g., 
bool, byte, int, and short) Promela support data types to represent message types and 
channels. It does not support types such as reals, floats, or pointers. This is deliberate 
because verification models are meant to model coordination and not computation. 
Promela also supports composite types such as records and arrays. 

7.2.2 Embedding C Code 

Promela supports the use of embedded C code fragments inside the models through the 
use of the c_code primitive. 

 

c_code <optional logical expression in C> {
 <C code fragment> 
} 
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For example: 

 

c_code [foo->ptr != 0 && step.i < 5 && step.i >= 0] 
{ 
 foo->ptr.x[step.i] = 12; 
} 

 
If the logical expression is specified, its value is evaluated before the c_code fragment 
inside the curly braces is executed. If the result of the evaluation is non-zero, the c_code 
fragment is executed. If the result of the evaluation is zero, the code between the curly 
braces is ignored, and the statement is treated as an assertion violation. The example 
above adds checks for null pointers and bounds on array indices. 

Many other code verifiers which do not necessarily use Promela as their modeling 
language use SPIN as a back-end verifier. 

7.2.3 State-space Reduction 

Two language statements are used to reduce the number of states in a Promela model: 
atomic and d-step.  

 

 

atomic { statement ; ...; statement }1 n

; ...; statement  } d-step { statement1 n

 
Atomic is used to group statements of a particular process into one atomic sequence. The 
statements are executed in a single step and are not interleaved with statements of other 
processes. The atomicity is broken if any of the statements is blocking. That is, 
statements of other processes can be interleaved in between. 

d-step can also be used to execute a number of statements in one step. The difference is 
that no intermediate states are generated or stored. If one of the statements blocks, this is 
considered a runtime error. 

7.2.4 Property Specifications 

Users can specify assertions using the assert(expr) statements. An assert statement is 
used to check if the property specified by the expression expr is valid within a state. If 
expr evaluates to 0, this implies that it is not valid and SPIN will exit with an error. The 
user can also use LTL formulas to specify general correctness requirements (e.g., 
temporal properties). See section 2.3.3.2 for a more detailed explanation. 

7.2.5 Search and Coverage 

SPIN has a highly optimized state exploration algorithm. It supports random, interactive 
and guided simulation, and both exhaustive and partial coverage, based on either depth-
first or breadth-first search. 
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To reduce the problem of running out of memory storing the states that have been 
visited (so that the search will not explore them again), SPIN provides an option called 
bitstate hashing, also known as supertrace. Bitstate hashing uses memory as a bit vector. 
When a state is visited during SPIN’s exploration, its state vector is hashed to a bit in 
memory: the bit indicates whether the state has been visited previously. If a different 
state vector hashes to the same bit location, SPIN will erroneously conclude that the state 
has been visited and will terminate exploration from that state. This may lead to false 
negatives (errors may not be found), but not false positives (no false error reports). 

Paradoxically, using the bitstate option may lead to increased coverage of the state 
space, because more of it can be explored in the given amount of memory. 

7.3 Bandera 
The goal of the Bandera project is to integrate existing programming language 
processing techniques with newly developed techniques to provide automated support 
for the extraction of safe, compact, finite-state models that are suitable for verification 
from Java source code. While the ultimate goal is fully automated model extraction for a 
broad class of software systems, Bandera takes as a given that guidance from a software 
analyst may be required. 
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Figure 6  The Bandera Toolset 

 
As illustrated in Figure 6, the Bandera toolset is designed to be an open architecture in 
which a variety of analysis and transformation components may be incorporated. 

7.4 BLAST 
The Berkeley Lazy Abstraction Software Verification Tool (BLAST) is a software model 
checker for C programs. The goal of BLAST (BLAST website) is to be able to check that 
software satisfies behavioral properties of the interfaces it uses. Blast uses 
counterexample-driven automatic abstraction refinement to construct an abstract model 
which is model checked for safety properties. The abstraction is constructed on the fly, 
and only to the required precision. 
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7.5 Bogor 
Bogor (Robby, Dwyer, and Hatcliff 2006) is an extensible software model-checking 
framework which includes: 

 Software model checking algorithms 

 Visualizations 

 A user interface designed to support both general-purpose and domain-specific 
software model checking 

Bogor provides support for object-oriented features such as dynamic creation of threads 
and objects, object inheritance, virtual methods, exceptions, and garbage collection. 
Bogor can be extended with new modeling types, expressions, and commands, new 
algorithms (e.g., for state-space exploration, state storage, etc) and new optimizations 
(e.g., heuristic search strategies, domain-specific scheduling, etc.).  

7.6 BOOP Toolkit  
The BOOP Toolkit has been developed at the Institute for Software Technology at Graz 
University of Technology. It is based on the SLAM project and uses the same main 
concept of verification by abstraction and refinement to determine the reachability of 
program points in a C program. The BOOP Toolkit follows three phases: 

1. Abstraction using theorem proving and predicate abstraction 

2. Model Checking of the abstract program to search for erroneous execution traces (with 
respect to a specification that must be provided by the user) 

3. Refinement. If the model checker found an error path that is feasible in the original C 
program, it is reported to the user. If the path is not feasible, the abstraction is 
refined by adding more detail and the process is reiterated.  

The toolkit is downloadable from Source Forge (BOOP website). 

7.7 LURCH 
LURCH (Menzies et al. 2004) uses random search to explore a state machine’s state space 
(see section 5.1.5.2). Because the search is random, it gives no guarantee that the state 
space has been exhaustively explored, so LURCH cannot be used for verification. 
However, any errors it finds are real errors, so it can be used for debugging. It can find 
assertion violations, deadlock, and cycle-based errors (no-progress cycles, and violations 
of temporal logic properties specified as acceptance cycles); finding cycle-based errors 
requires a state hash table. LURCH’s input format is concurrent finite-state machines, 
where transitions may be specified by C code. 

In a case study of running model checkers to find seeded errors in a flight guidance 
system model, NuSMV (a model checker not described in this report) had a mean 
runtime of 2 hours where LURCH had a mean runtime of 3 minutes, yet LURCH found 
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40 of the 44 seeded errors that NuSMV found. In other demonstration problems, 
LURCH found all the errors that SPIN found when SPIN could terminate with the given 
resources. LURCH is claimed to scale to larger problems, and tends to use a stable 
amount of resources. 

7.8 MCP 
Model Checker for C++ (MCP) is an explicit-state software model checker being 
developed by the Robust Software Engineering group at NASA Ames Research Center 
(Thompson and Brat, 2008). MCP was constructed specifically to allow programs written 
in C or C++ to be model-checked directly, without requiring prior translation or model 
extraction. It builds upon the LLVM (low level virtual machine) compiler infrastructure 
(LLVM website), thereby avoiding the requirement to directly recognize the extremely 
complex C++ language at source-level. This approach allows MCP to support the entire 
C++ language, including templates. The C language is handled fully, not just as an 
improper subset of C++. Experience from the JPF project has demonstrated the utility of 
program model checking. However, current flight software is mostly implemented in C, 
not Java, and in the future it seems increasingly likely that C++ will become the platform 
of choice. The MCP model checker was developed to fill the requirement for an explicit-
state software model checker, in the style of JPF, that fully supports the C++ language. 
As a test example, it was applied to the unmodified C code of the prototype CEV 
Onboard Abort Executive Flight Rules Checker. 

7.9 SLAM 
SLAM is a Microsoft project that blurs the line between static analysis and model 
checking and deductive reasoning. The main goal of SLAM is to check temporal safety 
properties of C programs (it actually checks that a program correctly uses the interface 
to an external library) while minimizing the problem of false positives (by using 
counterexample-driven refinement) without overburdening the users with code 
annotations. SLAM is original in the sense that it first creates a Boolean abstraction of the 
original program, then refines the abstraction until it can prove the property or produce 
a counterexample. 

SLAM is one of the rare model checkers with a successful technology transfer story. 
Indeed, the SLAM analysis engine forms the core of a newly released tool called Static 
Driver Verifier (SDV) that systematically analyzes the source code of Microsoft 
Windows device drivers against a set of rules that define what it means for a device 
driver to properly interact with the Windows operating system kernel. 
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7.10 VeriSoft 
VeriSoft (Godefroid, 2005) is a model checker for C and C++; other languages can be 
used, but components in other languages are treated as black boxes. VeriSoft has been 
used to find defects in very large telecommunications programs (Chandra, Godefroid, 
and Palm 2002). It is available for download at the VeriSoft website. This package 
includes a version of VeriSoft for analyzing multiprocess C or C++ programs whose 
processes communicate via a predefined set of types of communication objects. It is a 
“stateless” model checker, in that visited states are not saved. It uses clever partial-order 
reduction search algorithms utilizing program analysis to avoid revisiting states, and 
guarantees complete coverage of the state space to some depth, while preserving 
correctness properties. 

Verisoft can search for four basic types of errors: 

 Deadlocks. 

 Divergences. A divergence occurs when a process does not attempt to communicate 
with the rest of the system for more than a given (user-specified) amount of time. 

 Livelocks. A livelock occurs when a process is blocked during a sequence of more 
than a given (user-specified) number of successive states in the state space. 

 Violations of state assertions, the assertions having been stated using a special 
operation VS_assert(boolean_expr). 

To represent non-determinism in the model or environment, VeriSoft provides a special 
operation VS_toss to express non-deterministic choice, which is like Verify.random in 
Java PathFinder. 

 

82 



 

8 Automated Testing 

8.1 Introduction 
Software testing is the most commonly used technique for verifying and validating 
software. While testing may not provide the same rigor as model checking, it is far more 
scalable and usually does not require a significant tool infrastructure; thus its initial cost 
and learning curve is low. However, for complex systems these benefits are more than 
offset by the fact that it is hard to develop the “right” test cases that provide sufficient 
coverage. This difficulty often reduces coverage despite use of many test cases. The 
consequence is that testing is a very labor intensive process that typically accounts for 
about half the total cost of software development and maintenance while yielding poor 
reliability due to inadequate coverage (Bezier 1990)]. 

Automating testing not only reduces the cost of verifying and validating software but 
also increases its reliability. A recent report by the National Institute of Standards and 
Technology estimates that software failures currently cost the US economy about $60 
billion every year, and that improvements in software testing infrastructure might save 
one-third of this cost (NITT 2002). Testing, and in particular test case generation, lends 
itself to automation and has been the focus of much research attention; it has also been 
adopted in industry (Parasoft; T-VEC; Drusinsky 2000; Grieskamp et al. 2002). We 
distinguish between two main approaches to automatic test case generation: black box 
and white box. In the black-box approach, test cases are generated based on a 
specification of the inputs, while in the white-box approach, test cases are generated 
based on the analysis of the software under test or of a model of this software. 

The quality of a test suite is measured in terms of test coverage, such as structural code 
coverage, MC/DC, path coverage, and requirements coverage. In addition to program 
inputs, test cases also need to specify the expected output. This can be done by using 
testing oracles that encode the functional specifications of the software under test as 
assertions in the code, post-conditions, etc. 

In the remainder of this section, we discuss approaches to black-box and white-box 
testing that combine symbolic execution and model checking techniques for verification of 
Java programs. These approaches have been implemented in the Java PathFinder model 
checking tool. The originality of these techniques is that they handle complex data 
structures and multithreading, and allow for flexible coverage criteria. 

8.2 Black-Box Testing 
Black-box testing assumes an external perspective of the system under test (SUT). It uses 
concrete input test data to obtain results from the SUT, which are then checked against 
some oracle. Usually, the oracle uses functional properties, comparing the output data 
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with expected values. The approach is easy in general, but quickly becomes problematic 
for complex SUTs, especially if one of the following conditions exists: 

a. The set of possible, relevant inputs is large (this can be aggravated by particular 
implementations of algorithms that lead to numeric instability; i.e., the data 
might not seem to be suspicious from a domain perspective but still causes 
failure in a given implementation). 

b. The SUT behavior cannot be completely controlled by input data (for example, 
its behavior depends on scheduling in concurrent programs). 

c. The result data are complex and requires expensive analysis to verify. 

d. The result data can be subject to “accidental correctness”; i.e., the SUT produces a 
right result for wrong reasons. This usually is caused by a small set of possible 
outputs, computed from a large input space. 

e. Running the test requires manual action to enter inputs, start the SUT, or analyze 
the output. 

f. There is no measure of relevant test coverage. 

None of these problems can be overcome by strict black-box testing, but other V&V 
methods and tools can be used to mitigate them: 

1. Model checking can produce minimal sets of test cases that guarantee certain 
coverage criteria for example by using symbolic execution modes of the model 
checker (mitigates conditions a and f). This is subject of a more detailed 
discussion in section 8.3, “White-Box Testing.” 

2. Dedicated test systems providing test harness infrastructure can be used to 
automate test execution (for example, for regression tests, mitigating e); this is 
discussed in the next section. 

3. Dedicated verification runtime environments (e.g., virtual machines) can be used 
to simulate the program environment that cannot be controlled from a test 
application. These runtimes can also perform complex non-functional checks and 
defect analysis (mitigating b and c); this is discussed in the next section. 

4. Code annotations can be used in combination with specific virtual machines 
(VMs) or code generators to automatically create and run test cases (which saves 
the effort of manually creating test harnesses and/or explicit code 
instrumentation). This is discussed in the next section. This is especially helpful 
for achieving the “test-like-you-fly/fly-like-you-test” goal. Verification-oriented 
runtime systems (like a program model checker) also enable checking non-
functional properties that would otherwise not be amenable to testing (e.g., “no 
memory allocation in function x” or “function y has to be reentrant”). This 
mitigates c, d, and e. 

5. Contracts in the code can be used to specify fine-grained properties, which 
reduces the black box property to check to a generic1 “don’t violate any 

                                                      
1 See section 2.3.1.1* for the definition of “generic” properties. 
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contracts” (this is especially helpful to avoid “accidental correctness”). This is 
discussed in section 2.3.4.1. This can also be achieved by aspect-oriented 
programming, but at the cost of keeping the aspect system in sync with the SUT 
sources. 

8.2.1 Dedicated Test Harness Frameworks 

The most prominent example of a test framework is the JUnit system of Kent Beck and 
Erich Gamma (JUnit website). JUnit targets Java, but has spawned a large number of 
implementations for other languages (CPPUnit for C++, fUnit for Fortran, NUnit for C#, 
PyUnit for Python, etc.). 

JUnit’s main purpose is to provide infrastructure for efficient creation and execution of 
regression tests. This is achieved by creating JUnit-specific test case modules (classes), 
which call SUT functions and use the JUnit library to implement property 
checks:import sut.MySUT;. 

import org.junit.*;  

import static org.junit.Assert.*; 

 

class MySUT_Test { 

  //.. set up static environment 

  static MySUT sut = …  

 

  @Before 

  void reset() {..} 

 

  @Test 

  void test_foo() { 

    sut.foo(); 

    assertEquals(sut.getResult(), 42.0); // JUnit property 
implementation 

  } 

 

  @Test(expected=ArithmeticException.class) 

  void test_bar() { 

    sut.bar(-1); 

  } 

  … 

} 
 

JUnit is meant to be used from inside an integrated development environment (IDE) 
(such as Eclipse, NetBeans, etc.), but test cases can also be executed from the command 
line by means of a runtime system that loads the test module, looks for JUnit-specific 
markups (e.g., the @Test annotation), automatically calls the associated methods (e.g., 
test_foo()), collects and checks output (e.g., with Assert.assertEquals()), and 
finally keeps statistics over all executed tests: 
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> java –ea org.junit.runner.JUnitCore MySUT_Test 
 

Note that newer versions of JUnit do support a generic exception property (like 
"@Test(expected=ArithmeticException.class)"), but this depends on Java-specific 
runtime features. In general, the amount of code required to set up and execute test 
cases can be quite substantial, which is mostly due to missing support for input 
variation and the lack of generic properties beyond exceptions. 

It should be noted that both limitations can be overcome by running JPF from inside a 
JUnit test method; i.e., by executing the SUT by JPF, and then using a generic “no 
property violations detected by JPF” property as the JUnit test assertion. In this case, 
both input data variation and more generic property checks (e.g., “no race condition”) 
can be delegated to JPF. This approach is used for JPF’s regression test suite itself, but is 
of course Java specific. 

Since black box testing does not use any insights into the SUT, automating tests with 
systems like JUnit should be accompanied by measuring code coverage of the tests, 
either by using compiler options and tools for statically compiled languages (like gcov 
for C/C++), runtime monitors, or special VMs like JPF. Basic function and (binary) 
instruction coverage provides a good start, but should be augmented by branch 
coverage where possible (JPF provides a mode to calculate bytecode, extended basic 
block, and branch coverage). Tests without coverage information bear little verification 
credit, since—depending on input sets and runtime environments—there is no 
indication of how much SUT behavior is exercised by the test cases. 

8.2.2 Test-Related Code Annotations and Runtime Systems 

As useful as test systems like JUnit are, test cases do require a significant amount of 
work to create and maintain, especially since they are implemented outside of the SUT 
sources, and need to be kept up to date with SUT changes. 

It is therefore desirable to have an annotation system for in-source specification of tests; 
that is, to keep test cases next to the SUT functions they refer to. However, such an 
annotation system has to meet several requirements in order to be effective and gain 
acceptance: 

 The test specification format must be easy to read, preferably using target language 
expressions (like "foo(20) < 42"). 

 The format must be concise enough to avoid cluttering SUT sources with test 
annotations (for example, not greater than 20% of the non test related lines of code), 
which especially requires a notation for input data variation. 

 The annotation cannot produce code that might interfere with the SUT, otherwise it 
would violate the “test-what-you-fly/fly-what-you-test” principle. 

 Test property types should be extensible and configurable, depending on which 
runtime execution system is used. 

Since such a system is meant to be the first line of verification efforts (particularly for 
low-level function tests), its most important aspect is that it actually makes life easier for 
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the developer, mitigating the burden of creating and maintaining a separate body of test 
code. 

The JPF distribution includes a test annotation system that is based on Java annotations 
(http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html), and can be 
used with a minimal stand-alone execution runtime, or with JPF itself (in order to verify 
complex properties). 

class MySUT { 

  … 

  @Test({"(42) == 43", 

         "(-1) throws IllegalArgumentException"}) 

  int foo (int a) { 

    if (a < 0)  

      throw new IllegalArgumentException("negative values not 
supported"); 

    return a+1; 

  } 

 

  @Test("this(4[23]).('bla') matches '4[23]BLA' ") 

  String baz (String s){ 

    return (id + s.toUpperCase()); 

  } 

 

  @Test("(1.2) satisfies NoAlloc" 

  void bar (double d){ 

    …; 

  } 

 
The first @Test annotation specifies two tests with different inputs and goals ("new 
MySUT().foo(42) == 43" and "new MySUT().foo(-1) throws 
IllegalArgumentException"). 

The second @Test varies input data and matches the results against a regular expression 
("new MySUT(42).baz('bla')" and "new MySUT(43).baz('bla')" match the regular 
expression "4[23]BLA"). 

Those two test specs can be executed and evaluated with a simple, stand-alone runtime 
environment that uses Java reflection to read annotations and call the appropriate 
constructors and methods. The JPF MethodTester application is an example of such a 
runtime; here is the output of running it on the example shown above. 

> java gov.nasa.jpf.MethodTester MySUT 

@ MethodTester - run @Test expressions, v1.0 

@ target class:  MySUT 

@ ==================================== tests: 

@ ---- testing method: int MySUT.foo(int) 

@ test spec: "(42) == 43" 

@  

@ goal: "==" {43} 
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@ execute: MySUT.foo(42) 

@ returns: 43 

@ Ok 

 

@ test spec: "(-1) throws IllegalArgumentException" 

@  

@ goal: throws IllegalArgumentException 

@ execute: MySUT().foo(-1) 

@ throws: java.lang.IllegalArgumentException: negative values not 
supported 

@ Ok 

… 

 

The third @Test example requires a more sophisticated runtime environment to verify 
that there are no object allocations during the execution of method bar(). JPF itself 
provides such an environment, and consequently can be used to execute the 
MethodTester itself (i.e., it becomes the VM running the MethodTester application, 
which runs the SUT). 

> jpf gov.nasa.jpf.tools.MethodTester MySUT 

… 

@ ---- testing method: void bar(double) 

@ test spec: "(1.2) satisfies NoAlloc" 

@  

@ goal: alloc limit <= 0 

@ execute: MySUT.bar(1.2) 

@ FAILURE 

 

To further automate this process, the JPF execution in turn can be part of a JUnit test 
suite that includes annotation-based entry-level method tests and complex unit and 
integration tests requiring separate test harnesses. 

Again, the recursive application of runtime environments to add additional testing 
features and property types depends on Java (or an equivalent VM-based programming 
environment). For other languages (like C or C++), annotations have to be implemented 
as special comments that are processed by a source-to-source compiler that generates 
test sources. This is in general less convenient and usually does not allow generic 
properties (like “no race conditions”, or “no allocations”), but still can be considered as 
an effective first-line defense to reduce testing costs. 

8.3 White-Box Testing 
We discuss here a framework that combines symbolic execution and model-checking 
techniques for automated test case generation in the context of Java programs. The 
framework is typically used for test input generation for white-box testing. The 
framework model checks the program under test. Test case generation is guided by a 
testing coverage criterion, e.g., branch coverage. The model checker explores 
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systematically the paths of the program under test and records the paths that satisfy the 
coverage criterion. Symbolic execution, which is performed during model checking, 
computes a representation, i.e., a set of constraints, of all the inputs that execute those 
paths. The actual testing requires solving the input constraints in order to produce 
concrete test inputs that can be executed. 

8.3.1 Symbolic Execution 

We first provide some background on symbolic execution. The main idea behind 
symbolic execution (King 1976; Clarke 1976) is to use symbolic values, instead of actual 
data, as input values and to represent the values of program variables as symbolic 
expressions. As a result, the outputs computed by a program are expressed as a function 
of the symbolic inputs. The state of a symbolically executed program includes the 
(symbolic) values of program variables, a path condition (PC), and a program counter. 
The path condition is a (quantifier free) boolean formula over the symbolic inputs: it 
accumulates constraints which the inputs must satisfy in order for an execution to follow 
the particular associated path. The program counter defines the next statement to be 
executed. A symbolic execution tree characterizes the execution paths followed during 
the symbolic execution of a program. The nodes represent program states and the arcs 
represent transitions between states. 

Consider the code fragment below, which swaps the values of integer variables x and y, 
when x is greater than y. 

int x, y; 
1:if (x > y) { 
2:  x = x + y; 
3:  y = x - y; 
4:  x = x - y; 
5:  if (x > y) 
6:    assert (false); 
} 

 
Figure 7 shows the corresponding symbolic execution tree. Initially, PC is true and x and 
y have symbolic values SYMX and SYMY, respectively. At each branch point, PC is updated 
with conditions on the inputs that guarantee execution on alternative paths. For 
example, after the execution of the first statement, both then and else alternatives of 
the if statement are possible, and PC is updated accordingly. For the then branch, PC is 
updated with SYMX > SYMY (which makes the branch condition true), while for the else 
branch, PC is updated with  SYMX • SYMY (corresponding to the branch condition being 
false). If the path condition becomes unsatisfiable, i.e., there is no set of concrete inputs 
that satisfy it, this means that the symbolic state is not reachable, and symbolic execution 
does not continue for that path. For example, the assertion at line (6) is unreachable. 
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Figure 7 Symbolic Execution Tree 

8.3.2 Generalized Symbolic Execution 

Using symbolic execution for test input generation is a well-known approach, but 
typically only handles sequential code with simple data. In (Khurshid, Pasareanu, and 
Visser 2003; Pasareanu and Visser 2004), this technique has been extended to support 
advanced constructs of modern programming languages, such as Java and C++. The 
approach handles dynamically allocated structures, arrays, as well as concurrency. 

The algorithm starts execution of a method on inputs with uninitialized fields and uses 
lazy initialization to assign values to these fields; i.e., it initializes fields when they are 
first accessed during the method's symbolic execution. This allows symbolic execution of 
methods without requiring an a priori bound on the number of input objects. When the 
execution accesses an uninitialized reference field, the algorithm non-deterministically 
initializes the field to null, to a reference to a new object with uninitialized fields, or to a 
reference of an object created during a prior field initialization; this systematically treats 
aliasing. When the execution accesses an uninitialized primitive (or string) field, the 
algorithm first initializes the field to a new symbolic value of the appropriate type and 
then the execution proceeds. 

When a branching condition on primitive fields is evaluated, the algorithm non-
deterministically adds the condition or its negation to the corresponding path condition 
and checks the path condition's satisfiability using an “off-the-shelf” decision procedure. 
If the path condition becomes infeasible, the current execution terminates (i.e., the 
algorithm backtracks). 

The approach applies both to (executable) models and to code. It generates an optimized 
test suite for flexible/user specified criteria, while it checks for errors during test 
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generation. Moreover, it uses method pre-conditions (if available) to generate only test 
inputs that satisfy these preconditions. 

Our symbolic execution framework is built on top of the JPF model checker. The model 
checker explores the symbolic execution tree of the analyzed program, using its usual 
state space exploration techniques. Essentially, a state includes a heap configuration, a 
path condition on primitive fields, and thread scheduling. Whenever a path condition is 
updated, it is checked for satisfiability using an appropriate decision procedure, such as 
the Omega library (Omega website) for linear integer constraints. If the path condition is 
unsatisfiable, the model checker backtracks. The framework can be used for test input 
generation and for finding counterexamples to safety properties. Model checking lends 
itself to test input generation, since one simply writes as a set of (temporal) properties 
that say that some coverage cannot be achieved and the model checker will find 
counterexamples and associated path conditions, if they exist, that encode program 
paths that achieve the stated coverage goal. The path conditions are solved to obtain the 
actual test inputs. 

8.3.3 Tool Support and Applications 

The approach described above has been implemented as an extension of the Java 
PathFinder model checking framework JPF-SE (Anand, Pasareanu, and Visser 2007) and 
is available from the JPF distribution site (JPF website). It can be used for test case 
generation for Java programs or for UML statecharts (which we model in Java). The 
original implementation required a source-to-source transformation, while our current 
implementation is implemented directly in JPF, by a non-standard execution of Java 
bytecodes. The symbolic information is stored in attributes that are associated with the 
program variables and the operands in the operand stack. JPF-SE’s current 
implementation supports integer linear operations; implementation for reals (i.e., linear 
and non-linear constraints for real arithmetic) is ongoing work. 

We have applied our framework for testing object-oriented code: in (Visser, Pasareanu, 
and Khurshid 2004; Visser, Pasareanu, and Pelanek 2006) we show how a combination 
of model checking, symbolic execution and abstraction can be used to generate test cases 
for a variety of Java container classes (including TreeMap and BinomialHeap). Test 
cases are sequences of method calls in the container interfaces that add and remove 
elements from those containers. In (Visser, Pasareanu, and Khurshid 2004; Visser, 
Pasareanu, and Pelanek 2006) we also provide experimental comparisons of these 
advanced techniques with random test case generation. All the data from the 
experiments are available with the JPF distribution (JPF website). 

We have also applied our techniques to the Onboard Abort Executive (OAE), a 
prototype for Crew Exploration Vehicle (CEV) ascent abort handling being developed 
by NASA Johnson Space Center. The executive monitors a set of flight rules which, if 
violated, result in commanding specific kinds of aborts. The code for the OAE is not 
very large (only ~400 LOC) but it has complex conditions encoding different flight rule 
and abort combinations. Manual testing for the OAE is time consuming (e.g., it took 
several days for the developers of the OAE to generate tests that the developers believed 
achieved adequate coverage), while guided random testing did not cover all aborts. In 
contrast, it took two hours to set up JPF-SE for testing the OAE, and then in less than a 
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minute it generated ~200 tests to cover all aborts and flight rules. Moreover, the 
generated test suite was used for regression testing, and it found a significant error in a 
new version of OAE that lead to redesign of the code. 

8.4 Related Work 
The work related to the topic of automated test case generation, symbolic execution, and 
model checking is vast, and for brevity we only highlight here some of the closely 
related work. We first summarize tools and technique) that generate test sequences for 
object-oriented programs. JTest (Parasoft website) is a commercial tool that generates 
test sequences for Java classes using “dynamic” symbolic execution, which combines 
concrete and symbolic execution over randomly generated paths. Although this 
approach may generate redundant tests and may not guarantee the desired degree of 
coverage, random testing is in many cases pretty effective (Visser, Pasareanu, and 
Pelanek 2006). The AsmLT model-based testing tool (Grieskamp et al. 2002) uses 
concrete state-space exploration techniques and abstraction mappings. Rostra (Xie, 
Marinov, and Notkin 2004) also generates unit tests for Java classes, using bounded-
exhaustive exploration of sequences with concrete arguments and abstraction mappings. 

 

The Korat tool (Boyapati, Khurshid, and Marinov 2002) supports non-isomorphic 
generation of complex input structures and requires the availability of constraints 
representing these inputs. Korat uses constraints given as Java predicates (e.g., repOK 
methods encoding class invariants). Similarly, TestEra (Marinov and Khurshid 2001) 
uses constraints given in Alloy to generate complex structures. The ASTOOT tool 
(Doong and Frankl 1994) requires algebraic specifications to generate tests (including 
oracles) for object-oriented programs. The tool generates sequences of interface events 
and checks whether the resulting objects are observationally equivalent (according to the 
specification). 

Symstra (Xie et al. 2005) is a test generation tool that uses symbolic execution and state 
matching to generate test sequences for Java code. DART (Godefroid, Klarlund, and Sen 
2005) and the related tools CUTE and JCUTE (Sen and Agha 2006) use an interesting 
combination of concrete and symbolic execution for test generation. A program is 
started on a randomly generated input, and symbolic constraints are collected along this 
concrete execution. These constraints are then negated (more precisely, one of the 
conjuncts in the collected constraints) and solved to obtain new inputs that are 
guaranteed to execute the program on alternative paths. A set of complementary 
approaches use optimization-based techniques (e.g., genetic algorithms) for automated 
test case generation (Tonella 2004; Baresel et al. 2004). 

The work presented here is related to the use of model checking for test input generation 
(Ammann, Black, and Majurski 1998; Gargantini and Heitmeyer 1999; Heimdahl et al. 
2003; Hong et al. 2002). The focus of these works is on specification-based test input 
generation (i.e., black-box testing) where coverage of the specification is the goal. 
Recently two popular software model checkers, BLAST (see section 7.4) and SLAM (see 
section 7.9), have been used for generating test inputs with the goal of covering a specific 
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predicate or a combination of predicates (Beyer et al. 2004; Ball 2004). Both these tools 
use over-approximation based predicate abstraction and use some form of symbolic 
evaluation for the analysis of (spurious) abstract counterexamples and refinement. The 
work in (Ball 2004) describes predicate coverage as a new testing metric and ways to 
measure when the optimal predicate coverage has been achieved. 
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9 Case Studies 
This section briefly overviews a few NASA-relevant case studies that employed 
program model checking. 

9.1 DS-1 Remote Agent 
(Havelund, Lowry, and Penix 2001) describes an application of SPIN to find errors in the 
AI multithreaded plan execution module aboard the Deep Space 1 (DS-1) spacecraft. DS-
1 was a New Millennium spacecraft with an AI-based control system architecture called 
the Remote Agent. The plan execution module was based on an extension to Common 
Lisp called Executive Support Language (ESL). This layer provides reactive control 
mechanisms: It deals with managing tasks that require properties to hold at the start of 
and during task execution. If a required property becomes false during execution of a 
task, the task must be notified. This is clearly a multithreaded application with ample 
room for synchronization errors. Model construction was employed to model the ESL 
services in Promela, the language of the SPIN model checker. Lists were modeled as 
channels, and tasks as Promela processes. The environment was modeled as a parallel 
process that can change the status of a property. Two correctness properties were 
checked against the Promela model, a “release” property expressed as an assertion, and 
an “abort” property modeled in LTL. SPIN found four violations of these two properties 
in the Promela model; these violations were determined to reflect real errors (such as 
missing critical sections) in the implementation of ESL. 

Though the errors found were corrected, other parts of the Remote Agent that were not 
analyzed contained a similar error, which caused the remote agent to deadlock in actual 
flight. The use of JPF and abstraction to find, after the fact, the defect that caused the in-
flight error is described in (Havelund et al. 2000; Visser et al. 2003). A challenge 
experiment was performed to see whether model checking could find the error that led 
to a deadlock in space. The experiment involved a “front-end” group and a “backend” 
group, each ignorant of the defect, and was designed to mimic the process of an 
engineer doing visual inspection of code to find a suspect portion which needed further 
analysis. The front-end group was given access to the code of the Remote Agent 
executive. They isolated 700 lines of suspect code and gave it to the back-end group to 
model check, without telling the back-end group what they were suspicious of. The 
back-end group developed an abstract Java model and used the first-generation JPF 
(Havelund and Pressburger 2000) to model check the code. Their Java model changed an 
event counter to be modulo 3, to reduce the size of the state space. This was an 
“informal” abstraction because it was not shown to preserve errors. In another version, 
predicate abstraction was applied. 

JPF revealed a deadlock which was in fact the error that led to the deadlock in space. 
The error was of the same kind as had been found using SPIN in 1997 on the other 
portion of the remote agent executive: a missing critical section. The buggy code 
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involved a process containing a check for whether an event counter had registered any 
events; if it had not, it then waited for future events. However, this code was not in a 
critical section, so there was the unlikely possibility that after having checked the event 
counter, but before waiting, a new event could occur. The process would wait anyway, 
and this event would be lost. Another process was waiting on the first process to signal 
an event, so both ended up waiting for each other, causing the deadlock. You can see the 
relevant part of the Java model in the “oldclassic” example in the JPF distribution. 

9.2 Rover Executive 
This study (Brat et al. 2004) was a controlled experiment where several teams applied 
different V&V technologies to find seeded errors in an experimental Martian rover 
controller; model checking using JPF was one of the technologies. One of the results was 
that the original abstraction of time was an over-approximation so that errors found 
were spurious, but a deeper understanding of the controller code than possible under 
the time constraints was necessary to determine they were spurious. The JPF team 
decided to build an under-approximation so that no spurious errors would occur, so 
understanding the actual code was not necessary. 

9.3 DEOS 
DEOS (Dynamic Enforcement Operating System) is a realtime OS used in Honeywell’s 
avionics product line. It enforces space and time partitioning; the latter means that “a 
thread’s access to its CPU time budget cannot be impaired by the actions of any other 
thread.” During formal inspection, a subtle bug was found by Honeywell’s developers 
that broke time partitioning. An experiment was conducted to see whether a NASA 
team unfamiliar with the DEOS code and the error could rediscover the error using 
systematic model-checking techniques. They did. 

About 1500 lines of the C++ code were analyzed, mapped nearly one-to-one to Promela. 
Predicate abstraction was also used. The most time-consuming operation was building a 
faithful environment modeling the threads, clock, and system timer. An ad-hoc iteration 
process was used to refine the environment based on analysis of spurious 
counterexamples. An environment was also systematically generated using filter-based 
techniques, with much less effort (Penix et al. 2005). 

9.4 SAFM Case Study: NASA C++ flight software 
This section provides: 

 History of the Propel toolset used for model-checking C++ applications, 

 A brief overview of a NASA C++ flight application selected for a case study,  

 Rationale for the selection of this application, and  
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 A discussion of the case study. 

Details of the case study relevant to model checking are mentioned in several sections of 
this guidebook. This case study is described in (Markosian, et al. 2007). 

9.4.1 History of the Propel Toolset 

Development of the Propel toolset for model checking C++ applications was started at 
NASA under funding from the Engineering for Complex Systems (ECS) program in 
2001. The principal goal of this work was to develop tools for model checking NASA 
C++ flight software. The strategy for developing the tools was to leverage the existing 
research on program model checking, which had produced a research prototype tool, 
Java PathFinder (JPF), applicable to Java. The strategy of leveraging the prototype Java 
model checker was to be done by productizing the prototype and developing a 
translator from C++ to Java. JPF would then be applied to the translated C++ 
application.  

It was recognized from the outset that not all of the C++ language and libraries could be 
mechanically translated into Java, and that there would likely be issues even with 
successfully translated code (for example, an increase in state space introduced by the 
translator). Nevertheless, this was deemed preferable to developing a completely new 
program model checker for C++. This work received continued funding from ECS 
through late 2004, at which time funding was terminated by a re-ordering of research 
priorities. By the time funding ended, a translation approach for the identified target 
subset of C++ had been designed and a prototype translator constructed. However, the 
prototype was not robust and no further funding was available to support its continued 
development.  

9.4.2 Brief Overview of SAFM 

The Shuttle Abort Flight Management system (SAFM) was developed by NASA Johnson 
Space Center and General Dynamics Decision Systems as part of the Shuttle Cockpit 
Avionics Upgrade (CAU). SAFM is a single-threaded application written in 30 KLOC of 
C++ that follows coding standards appropriate to safety-critical applications. 

SAFM evaluates the potential abort options for the Space Shuttle under various 
contingencies and provides abort recommendations to the crew. Primarily as a result of 
the loss of Columbia and the subsequent re-focusing of NASA’s crewed space flight 
away from the space shuttle and similar vehicles, both CAU and SAFM were canceled 
before being deployed, but the developers of SAFM remained interested in the Software 
Assurance Research Program (SARP) initiative’s analyses of the software. 

9.4.3 Rationale for Selection of SAFM as the Target Application  

Under the ECS program, SAFM had been identified as one of several candidates for a 
feasibility study. Starting in 2004, under funding from NASA IVV Facility Software 
Assurance Research Program (SARP), we undertook a technology transfer activity to 

97 
 



Program Model Checking: A Practitioner’s Guide 

apply the Propel tools to a significant NASA C++ flight software application and to 
develop this Guidebook based on that and other case studies.  

One of the first tasks under the SARP project was to investigate the previously identified 
candidate C++ applications, including SAFM, and select one. Since C++ had only 
recently been introduced for flight software applications at NASA (earlier flight 
software was generally written in Ada, assembler and C) our selections were limited. 
We chose SAFM for several reasons: 

 High criticality—it is capable of determining a safe landing trajectory for the shuttle 
autonomously in case of a failure requiring an abort during ascent; 

 Commonality of interest with the developers and their willingness and availability 
to work with us; 

 Good conformance of the application with technical criteria for C++ model checking 
using Propel; and 

 Manageable size (approx. 30,000 LOC). 

High criticality—Advanced defect detection technologies such as model checking are 
thought to be capable of detecting subtle defects which can escape detection using 
standard testing approaches, but they also represent a departure from current standard 
practice and are relatively immature. Further NASA development and deployment of 
leading-edge V&V technologies is best justified by demonstrating their success on 
safety-critical NASA applications. SAFM was rated “Crit 1R”—high criticality but 
redundant software. The in-flight SAFM system is redundant because there are ground 
systems that duplicate and take priority over in-flight SAFM functionality in the 
presence of effective ground communication. In the absence of ground communication, 
the on-board SAFM system provides the required situational awareness to the crew. 
Since human life might depend on flawless operation of SAFM, it needs to be “human 
rated,” which requires extensive V&V.  

Commonality of interest—Success in applying a new software engineering technology in 
the context of a significant application requires a good working relationship among the 
application developers and the technology developers. The SAFM development team 
was willing to work with us for several reasons. They recognized a need for significantly 
greater autonomy (functionality achieved through automation in the absence of ground 
control) in space flight software than is currently available in applications like SAFM, 
and they recognized that a major barrier to greater autonomy has been the inability to 
perform verification and validation of autonomous software. Program model checking 
has been thought to be particularly well suited to V&V of complex applications such as 
autonomy software. In addition, although SAFM had been delivered to NASA by its 
developers, it was not scheduled for deployment until 2006; this two-year lead time 
would allow remediation of potential issues that our technologies might reveal.  

Technical match—Mismatch between technology capabilities and a target application can 
result in redirection of project focus, resources lost in developing workarounds, or even 
a complete failure. SAFM was a good fit to the technical characteristics required by the 
translation approach taken by Propel. Most of the coding standards identified for 
successful model checking using Propel were met in SAFM. For example, SAFM did not 
make extensive use of the C++ Standard Template Library, and had only one use of 
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multiple inheritance. On the other hand, SAFM lacked an important characteristic which 
would have made it a much better candidate for an early feasibility demonstration: It is 
single-threaded, whereas the properties that model checkers are best adapted to 
verifying “out of the box” include freedom from deadlock and other concurrency 
defects. Another characteristic of SAFM that impeded the effectiveness of model 
checking is that much of SAFM performs “number crunching” using floating point 
arithmetic. Model checking, which focuses on the correctness of state transitions, is not 
particularly effective at detecting defects in arithmetic computations.  

Manageable size—Program model checking is limited by the size of the state space of 
complex applications. SAFM’s size was known from the start to be too large to allow 
program model checking in its entirety using the approach taken with the Propel toolset. 
This did not represent a critical problem because the application was modular and 
would allow model checking of selected modules. Our goal was not to model check, in 
production mode, a complete application, but to demonstrate the feasibility of Propel. 
Still, the size of the application needed to be limited because the entire application and 
its test environment would need to be ported, compiled, and executed on the platforms 
used by Propel developers at Ames Research Center; and the Propel team would need to 
obtain a sufficient understanding not only of the application, but also of its low-level 
technical requirements (the system requirements specification—SRS) to apply Propel 
effectively. 

9.4.4 Property Identification 

In order to perform model checking, you need to specify a number of properties that the 
application under analysis must satisfy. JPF detects certain generic properties by 
default—for example, “no assertion violations” and certain concurrency-related 
properties such as “no deadlocks” and “no race conditions.” The other type of properties 
that can be checked by JPF are application-specific properties. Since SAFM was a single-
threaded application which by default did not contain any assertions, the only 
properties that we could concentrate on were application-specific properties that 
required domain knowledge. We worked closely with the SAFM developers, 
particularly the SAFM test personnel, and identified a number of those properties. The 
properties were then tested using the existing SAFM test suite. In some cases, this 
revealed violations of the initial properties so that iteration with the developers was 
necessary to correctly formulate the properties. In the more interesting cases, it revealed 
implementation defects in SAFM. 

9.4.5 Code Instrumentation 

Property oracles were inserted into the code using Aspect C++. An important side 
benefit of using Aspect C++ was that the application could be instrumented without 
modification of the source files. This allowed the case study to keep pace with successive 
SAFM releases. 
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9.4.6 Model Checking SAFM 

Our intention was to use JPF for program model checking of these properties. The SAFM 
code was partially translated to Java using Propel, a C++-to-Java translator that was 
being developed for the purpose of bringing model checking and other program 
analyses to C++. Application of the model checker was limited for the reasons discussed 
above. However, an experiment was performed in model checking a portion of SAFM 
that contained an error found by inspection, but that had not been revealed by the 
SAFM test suite. A D4V change, that of exploiting polymorphism (see section 6.3.2), 
made the error more apparent. A property revealing the error was formulated and 
model checked on the original translated code and the code after performing the D4V 
change. JPF’s choice generators were used to completely cover an input space relevant to 
the portion. On average, JPF used 25% less time and 13% less memory to check the code 
that was modified based on the identified D4V opportunity, even though the space 
explored was the same, because the paths to be checked to detect the error were shorter. 

9.5 MER Arbiter 
JPL’s Mars Exploration Rover (MER) software is multithreaded software that must deal 
with shared resources. The arbiter module prevents potential conflicts between resource 
requests, and enforces priorities. It was the subject of a case study using SPIN described 
in (Holzmann and Joshi 2004) and has been mentioned in section 4.4 on Model-Driven 
verification. Model checking the original problem, with 11 threads and 15 resources, was 
deemed infeasible. In the study, three versions of a reduced problem with fewer threads 
and resources were modeled: a hand-built Promela model; a version using the original C 
code, with all relevant state information tracked using c_track (see section 4.4); and 
finally a version like the second but using data abstraction as described in section 4.4 
with only essential data retained. SPIN found safety and liveness property violations in 
each version, but nothing considered serious by the engineers; thus the application of 
SPIN gave more confidence that the design was correct. The first model was efficient, 
but relies on the accuracy of the hand-built model. The second was inefficient, but 
adhered to the original C code. The third was efficient, yet still adhered to the original C 
code. 

9.6 CEV Onboard Abort Executive Prototype 
See section 8.3.3. 
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Appendix A – An Example of a 
Primitive Type Abstraction in C++ 
 

This appendix provides an example of a C++ class definition for values of type double. It 
supports the verification & validation of a number of important properties associated 
with different operations involving double value. It generates an assertion violation: 

 If the number is not a legal number 

 If the number represents a +infinity or a –infinity 

 If an attempt is made to divide a double number by zero  

It encapsulates the definition of various operations performed on double numbers and 
includes assertions that are necessary to check for the above violations. A developer or a 
V&V person trying to apply a tool such as a model checker can use this class to quickly 
check if the target application violates any of the above properties. 

Note that this class can be extended to include other checks; for example, operations 
involving exact comparison between double values. One would need to extend the class 
to include the definition of operator==() and a constructor that also takes an epsilon 
value as a parameter. This is left as an exercise for the reader. 

 

#ifndef VTYPES 

#define VTYPES 

 

#ifdef __cplusplus 

 

#include <stdio.h> 

#include <math.h> 

#include <assert.h> 

 

class Double { 

 double m_value; 

 

public: 

 

 Double () { 

  m_value = NAN; 

 } 

   

 Double (double value) : m_value(value){ 

 } 

   

 Double& operator= (double value) { 
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  m_value = value; 

 return *this; 

} 

  

 Double operator+ (double value) { 

  assert(!isnan(value)); 

  assert(!isnan(m_value)); 

  assert(!isinf(value)); 

  assert(!isinf(m_value)); 

     

  return Double(m_value + value); 

 } 

 

  Double operator/ (double value) { 

  assert(!isnan(value)); 

  assert(!isnan(m_value)); 

  assert(!isinf(value)); 

  assert(!isinf(m_value)); 

  assert(value != 0.0); 

 

  return Double(m_value / value); 

  } 

 

 Double operator- (double value) { 

  assert(!isnan(value)); 

  assert(!isnan(m_value)); 

  assert(!isinf(value)); 

  assert(!isinf(m_value)); 

 

    return Double(m_value - value); 

  } 

   

 Double operator* (double value) { 

  assert(!isnan(value)); 

  assert(!isnan(m_value)); 

  assert(!isinf(value)); 

  assert(!isinf(m_value)); 

 

  return Double(m_value * value); 

 } 

 

 operator const double () { 

  return m_value; 

 } 

}; 

 

#else  // not __cplusplus 
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typedef double Double; 

 

#endif 

 

#endif VTYPES 

 

103 
 





 

Appendix B – Example 
Implementation of Minimal C++ PbC 
Infrastructure 
 

/* @file test.cpp - example of how to use the simple 

 *                  programing-by-contract system for C++ 

 */ 

 

#include "pbc" 

 

class Foo { 

 double r; 

 

public: 

 Foo () : r(40.0) {} 

 

 double doThat (double d); 

 

 // if we have class invariants, those have to be implemented in 

 // a dedicated 'invariant' member function 

 bool invariant () const { 

  return ((r >= 0.0) && (r <= 42.0)); 

 } 

}; 

 

double Foo::doThat (double d) { 

 

 MBR_CONTRACT_RP( double, Foo, doThat, // type, class, function 

                    double, d, // checked arg types and names 

                    REQUIRES( d > 0), // precond 

                    ENSURES((d==old_d) && (result<40.0)) // postcond 

                 ); 

          

 if (d < 1.0) { 

  r += d * 2.0; 

  RETURN(0.0);  // use the RETURN() macro instead of 'return' 

 } else { 

  r += d; 

 RETURN(r); 

 } 

} 
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class Bar { 

public: 

 void doThis(int cmd); 

 

 // if we don't have invariants, but have functions using 

 // contracts, we have to define an invariant placeholder 

 NO_INVARIANT 

}; 

 

void Bar::doThis (int cmd) { 

 

 MBR_CONTRACT_P( Bar, doThis,               // no return type 

                   int, cmd,                  // checked argument 

                   REQUIRES( cmd > 0), 

                   NO_ENSURES                 // no post-conditions 

                  ); 

  

 Foo f; 

 f.doThat(5.0); 

} 

 

//// test driver 

int main (int argc, char* argv[]) { 

 Bar b;    

 b.doThis(42); 

  

 return 0; 

} 

 

/* @file pbc - header file for simple programming-by-contract  

 * support for C++ 

 * 

 *    THIS CODE IS ONLY MEANT TO BE USED AS AN EXAMPLE 

 * 

 * The principle is to use macros defining function nested contract 

 * classes that check for preconditions in the constructor and  

 * postconditions in the destructor, using automatic contract 

 * objects / RAII to make sure all exit points of a function are 

 * instrumented. Pre- and post conditions are defined by means of 

 * macros expanding into member functions of the contract class. 

 * 'Old' value copies and references to input parameters are 

 * kept as data members of the contract class. Invariants have to be 

 * defined as const member functions of the owning class. The base  

 * class for all contracts mainly keeps track of all contract  

 * objects on the stack, to support debugging contract violations 

 * 
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 * This version does not support sub-contracting and interface (pure 

 * virtual function member) contracts. It also does not support  

 * multi-threading, but can be extended to do so. 

 * 

 */ 

 

#ifndef _PBC 

#define _PBC 

 

#include <iostream> 

 

using namespace std; 

 

//// the base class for all contracts 

class contract_t { 

 

protected: 

 contract_t* caller;      // contract object of the caller 

 const char* class_name;  // class name of contract owner 

 const char* func_name;   // the function member owning the 

                            // contract 

 bool in_postcond; 

  

  static contract_t* last; // last active contract object created 

  

  contract_t (const char* class_name, const char* func_name) : 

             class_name(class_name), 

             func_name(func_name), 

             in_postcond(false) { 

  // for multi-threading, we would have to be a bit more 

  // sophisticated (keeping a map of stack adr bases) 

  caller = last; 

  last = this; 

 } 

  

 virtual ~contract_t () { 

  last = caller; 

 } 

 

public: 

 const char* get_class_name() {  return class_name; } 

 const char* get_func_name() { return func_name; } 

 contract_t* get_caller() { return caller; } 

 virtual void report (ostream& serr) = 0; 

}; 

 

 

//// pointer to handler function for contract violations 
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extern void (*contract_handler) (contract_t* c, 

                                 const char* file, int line, 

                                 const char* contract_type, 

                                 const char* cond); 

 

 

//// do we want PbC instrumentation 

#ifdef PBC 

 

//// helper (embedded) macros for concrete contract member definition 

 

#define REQUIRES(cond) \ 

 void precond () { \ 

  if (!(owner->invariant())) contract_handler(this, \ 

                                    __FILE__, __LINE__, \ 

                          "invariant", "precondition"); \ 

  if (!(cond)) contract_handler(this, __FILE__, __LINE__, \ 

                                      "precondition", #cond); \ 

 } 

 

#define ENSURES(cond) \ 

 void postcond () { \ 

  if (!(cond)) contract_handler(this, \ 

                                  __FILE__, __LINE__, \ 

                             "postcondition", #cond); \ 

  if (!(owner->invariant())) contract_handler(this, \ 

                                  __FILE__, __LINE__, \ 

                         nvariant", "postcondition"); \ 

 } 

 

#define NO_ENSURES ENSURES(true) 

 

#define NO_REQUIRES REQUIRES(true) 

 

#define NO_INVARIANT \ 

 bool invariant() const { return true; } 

 

//// to be used instead of 'return' 

#define RETURN(result) \ 

 return _contract_.set_result(result) 

 

 

//// macros to define concrete contract classes inside of functions 

//// and function members 

 

//// contract for member func with non-void type and one 

//// checked parameter 

#define MBR_CONTRACT_RP( return_t, cname, fname, \ 
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                       arg0_t, arg0, _pre, _post)\ 

 class _contract_t : public contract_t { \ 

 public: \ 

  const cname *owner; \ 

  return_t result; \ 

  const arg0_t  &arg0, old_##arg0; \ 

\ 

  _contract_t (const char* owner_class, const cname* owner, \ 

                 const char* func_name, arg0_t &arg0) \ 

               : contract_t(owner_class, func_name), \ 

                 owner(owner), arg0(arg0), old_##arg0(arg0) { \ 

   precond(); \ 

  } \ 

\ 

 return_t set_result (return_t r) { \ 

  return (result = r); \ 

 } \ 

\ 

 ~_contract_t () { \ 

  in_postcond = true; \ 

  postcond(); \ 

 } \ 

\ 

 void report (ostream& serr) { \ 

  serr << class_name << "::" << func_name \ 

           << "(" << old_##arg0 << ")"; \ 

  if (in_postcond) { \ 

   serr << " : (" << arg0 << ") -> " << result; \ 

  } \ 

  serr << endl; \ 

 } \ 

\ 

 _pre \ 

 _post \ 

 } _contract_(#cname, this, #fname, arg0); 

 

 

//// contract for void member func with one checked parameter 

#define MBR_CONTRACT_P( cname, fname, arg0_t, arg0, _pre, _post) \ 

 class _contract_t : public contract_t { \ 

 public: \ 

  const cname *owner; \ 

  const arg0_t  &arg0, old_##arg0; \ 

\ 

  _contract_t (const char* owner_class, const cname* owner, \ 

                 const char* func_name, arg0_t &arg0) \ 

               : contract_t(owner_class, func_name), \ 

                 owner(owner), arg0(arg0), old_##arg0(arg0) { \ 

109 
 



Program Model Checking: A Practitioner’s Guide 

  precond(); \ 

 } \ 

\ 

 ~_contract_t () { \ 

   postcond(); \ 

 } \ 

\ 

 void report (ostream& serr) { \ 

  serr << class_name << "::" << func_name \ 

           << "(" << old_##arg0 << ")" << endl; \ 

 } \ 

\ 

  _pre \ 

  _post \ 

 } _contract_(#cname, this, #fname, arg0); 

 

//// ... more contract class definition macros 

 

 

#else // no PbC instrumentation 

 

#define REQUIRES(cond) 

#define ENSURES(cond) 

#define NO_INVARIANT 

#define NO_ENSURES 

#define NO_REQUIRES 

#define RETURN(result) return result 

#define MBR_CONTRACT_RP(return_t,cname,fname,arg0_t,arg0,_pre,_post) 

#define MBR_CONTRACT_P( cname, fname, arg0_t, arg0, _pre, _post) 

 

#endif // PbC support 

 

#endif _PBC 
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Appendix C – Acronyms and 
Abbreviations 
 

AOP  aspect-oriented programming  

BBFS Bounded Breadth-First Search  

BDFS Bounded Depth-First Search  

BEG Bandera Environment Generator  

BFS Breadth-First Search  

BLAST Berkeley Lazy Abstraction Software Verification Tool  

CAU Cockpit Avionics Upgrade  

CEGAR Counter-Example Guided Abstraction Refinement  

CICT Communication, Information, and Computation Technology  

CTL Computation Tree Logic  

DEOS Dynamic Enforcement Operating System  

DFS Depth-First Search  

DS-1 Deep Space 1  

ECS Engineering for Complex Systems  

ESL Executive Support Language  

ETDP Exploration Technology Development Program  

FSM Finite State Machine  

IDE integrated development environment  

IMA Integrated Modular Avionics  

ITSR Information Technology Strategic Research  

IV&V Independent Verification and Validation  

JML Java Modeling Language  

JNI Java Native Interface  

JPF Java PathFinder  

JVM Java Virtual Machine  

KLOC thousand lines of code  
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LTL Linear Temporal Logic  

MC/DC modified condition/decision coverage  

MER Mars Exploration Rover  

MJI Model Java Interface  

MPL Mars Polar Lander  

OAT Office of Aerospace Technology  

OOP object-oriented programming  

OSMA Office of Safety and Mission Assurance  

PbC Programming by Contract  

Promela Process Meta Language  

QRE Quantified Regular Expressions  

RSE Robust Software Engineering  

SAFM Shuttle Abort Flight Management system  

SARP Software Assurance Research Program  

SDV Static Driver verifier  

SPIN Simple Promela Interpreter  

SRS system requirements specification  

SUT system under test  

UML Unified Modeling Language  

V&V Verification and Validation  

VM virtual machine  
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Appendix D – Glossary 
advice. In aspect-oriented programming, a function, method, or procedure applied to a 
program at a join point. 
all-DU-paths. DU = “definition-use”. A DU path is a data flow path from a point where 
a variable is assigned a value (its definition) and a point where the value assigned is used. 
All-DU-paths is a test coverage metric. 
application-specific property. A program property that depends on the nature of the 
application and typically contains domain-specific information. For example, in a 
particular program, following the operation x := y / z , “ x < 985000” may be an 
application-specific property, whereas at another point or in another program, following 
the operation x := y / z , “ x > 985000” may be the correct property. 
approximation. A model that is an abstraction of a concrete system. Approximations are 
used where the actual (concrete) state space is too large or complex to model check. 
aspect. A cross-cutting concern; that is, a concern that may cut across many modules. 
Cross-cutting concerns are often contrasted with core concerns, which are the main 
concerns of the program and are modularized by classes. Logging is an example of an 
aspect; logging may cross-cut many modules. 
aspect-oriented programming (AOP). Languages that allow the programmer to express, 
in stand-alone modules called aspects, features or behaviors that cut across many 
modules in a program. 
assertion; assert statement. A statement that asserts that a program property is expected 
to be true of the state at that point in the program. This can sometimes be verified by a 
model checker. 
assume guarantee paradigm. A divide-and-conquer mechanism for decomposing the 
task of verifying property P about a system into subtasks about the individual 
components of the system. Components are checked not in isolation, but in conjunction 
with assumptions (A) about the context of the components. Property P is said to be the 
“guarantee” that a component provides under “assumption” A. 
atomic section. A set of statements that is tracked as a single transition in model 
checking. In Java PathFinder, an atomic section is a sequence of instructions that is 
executed by the model checker without a thread context switch. 
Bandera Environment Generator (BEG). A tool set that integrates existing 
programming language processing techniques with newly developed techniques to 
provide automated support for the extraction of safe, compact, finite-state environment 
models from Java source code. These models are then used during the verification of 
software components. 
Berkeley Lazy Abstraction Software Verification Tool (BLAST). A software model 
checker for C programs. It uses a particular abstraction called “predicate abstraction” 
and abstraction refinement based on analysis of abstract counterexamples. The goal of 
BLAST is to check that software satisfies behavioral requirements that are encoded as 
safety properties. 
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best-first search. A variation of breadth-first search that explores the most promising 
neighboring state chosen according to an evaluation function. 
bit state hashing. A lossy state compression technique that uses memory as a bit vector 
to encode a state. The encoding is compared with the encodings for previously visited 
states to determine whether a state has been visited previously. Also known as 
supertrace. 
bounded breadth-first search (BBFS). A breadth-first search that imposes a maximum 
limit on the number of neighboring states searched. 
bounded depth-first search (BDFS). A depth-first search that imposes a maximum limit 
on the depth of the search. 
branch point. Choices resulting from conditional statements in the code, scheduling 
decisions, or different input values, which can produce multiple possibilities for the next 
state to be considered by the model checker. 
branching factor. The number of neighboring states in a search. 
breadth-first search (BFS). A search strategy where the model checker begins at the start 
state and explores all its outgoing transitions to the neighboring states, then for each of 
those nearest states, it explores all of its outgoing transitions to its neighbor states, and 
so on, until it hits a goal state or a state with no outgoing or unexplored transition. 
bytecode. A binary representation of an executable program designed to be executed by 
a virtual machine rather than by dedicated hardware. 
checkpoint. A point in the code where the program is in a consistent state and a 
property oracle can be inserted. 
class invariant. An assertion, used in programming-by-contract, that is evaluated before 
and after each invocation of a public function. The expectation is that the assertion is 
true at both these execution points. 
computation tree logic (CTL). A form of logic whose model of time is a tree-like 
structure in which there are multiple possible future paths; the path to be realized in the 
future is not determined. 
control abstraction. The removal of program components that are irrelevant to the 
property under analysis. 
concurrent system. A system in which multiple threads are executing at the same time 
and can interact with each other. 
concurrency error. An error caused by conflicting behavior of multiple processes in a 
concurrent system. 
counterexample. In the context of model checking, a response from a model checker that 
shows the violation of a property and the major events leading to that violation. Also 
called an error trace. 
Counter-Example Guided Abstraction Refinement (CEGAR). An approach to 
automatic abstraction and refinement of software systems that analyzes abstract 
counterexamples to derive progressively better models of the program being verified. 
data abstraction. In model checking, the replacement of the large domain of a program 
variable with a smaller domain; for example, using the signs abstraction to reduce the 
very large domain of an integer variable to three values { negative, zero, positive }. 
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deadlock. In a concurrent system, a state in which two or more processes wait for each 
other to finish, and hence neither can proceed. There is no exit transition from a 
deadlock state. 
depth-first search (DFS). A search strategy in which the model checker begins at the 
start state and recursively explores one of its outgoing transitions to a successor state 
(i.e., as far as possible along each branch) before backtracking and selecting the next 
transition. 
directed model checking. The use of guided or heuristic search techniques during state 
space exploration. 
driver. A program component that invokes operations on the unit under test. 
d-step. A language statement used in a Promela model to execute a number of 
statements in a single step. If one of the statements blocks, it is considered a runtime 
error. 
Dynamic Enforcement Operating System (DEOS). A real-time operating system 
developed by Honeywell Laboratories for integrated modular avionics systems. 
edge. A transition between states (nodes) in a state machine. 
environment assumption. A filter that captures knowledge about the usage of software 
components to help refine a naively generated test environment. These assumptions 
must be checked against implementations of the missing components (that represent the 
actual environment) to ensure that the entire system satisfies the desired properties. 
environment model. An abstract runtime context in which the component under test 
executes, containing both data information and control information that influence the 
unit under analysis. 
error trace. A response from the model checker that shows the violation of a property 
and the major events leading to that violation. Also called a counterexample. 
Executive Support Language (ESL). A plan execution language developed at the Jet 
Propulsion Laboratory to support the construction of reactive control mechanisms for 
autonomous robots and spacecraft. 
finite state machine (FSM). A model of system behavior composed of a finite number of 
states and transitions between those states. 
generic property. A property that is not dependent on the nature of the application 
being checked. Generic properties can be formulated and understood by those who do 
not have any application-specific domain knowledge. An example of a generic property 
is “the system has no deadlock states.” 
heuristic search. A search process that exploits the information known about the system 
under analysis in order to accelerate the search process. 
Java Modeling Language (JML). An open source language extension for Java that 
specifies behavioral interfaces of modules. It provides additional expressions focused on 
avoiding side effects that might occur if the assertions were simply written in Java. 
Java Native Interface (JNI). A programming interface that allows Java code running in 
the Java virtual machine to interact with native applications and libraries written in 
other programming languages. 
Java PathFinder (JPF). An open source model checker developed at NASA Ames 
Research Center as a verification and testing environment for Java programs. 
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join point. In aspect-oriented programming, a point where additional behavior, in the 
form of advice, can be applied to change the behavior of the program. 
inheritance. In object-oriented programming, a hierarchical specialization of user-
definable data types (called “classes”) in terms of data and function members. 
instrumentation. Insertion of code in a program to monitor or measure the performance 
of the program, typically for detecting, diagnosing and logging error information. For 
program model checking, instrumentation typically takes the form of annotations and 
code extensions that are inserted in the source. Aspect-oriented programming provides 
alternative methods of instrumenting a program using advice and join points. 
integrated development environment (IDE). A software application that provides 
comprehensive facilities to computer programmers for software development. An IDE 
typically includes a source code editor and tools for compiling and debugging the 
program. 
iterative widening. Repeated searches with increasing values for the width of the 
search. 
linear temporal logic (LTL). A specification language used to express properties that 
hold for all paths through the state space. In LTL one can encode formulas about the 
future of paths such as that a condition will eventually be true, a condition will be true 
until another condition becomes true, etc. 
liveness property. An assertion that something good (a desired action) happens or 
keeps happening. Liveness properties are used mainly to ensure computational 
progress; that is, that under certain conditions, some event will ultimately occur. 
loop bound. An assertion that checks that a loop can be traversed only a bounded 
number of times. 
loop invariant. An assertion that is true at the beginning of the loop and after each 
execution of the loop body. 
loop variant. An assertion that describes how the data in the loop condition are changed 
by the loop. It is used to check forward progress in the execution of loops to avoid 
infinite loops and other incorrect loop behavior. 
model. A abstract representation of the structure and behavior of a system. 
model checking. A collection of techniques for analyzing a model of a system to 
determine the validity of one or more properties of interest. 
model-driven verification. A technique that uses abstraction mappings during concrete 
model checking to analyze an under-approximation of the feasible behaviors of a 
system. All reported counterexamples correspond to real errors. 
model extraction. Translation of the system being modeled into the input notation of an 
existing model checker. 
modeling primitive. One of the fundamental building blocks of a model. 
multiple inheritance. In object-oriented programming languages, inheritance from more 
than one parent class. 
node. A state in a model. 
object-oriented programming (OOP). A programming paradigm that separates features 
and behaviors into classes of objects and methods that act on these classes. 
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over-approximation. The result of abstracting a concrete system when there are more 
behaviors in the abstraction than in the concrete system. Over-approximation preserves 
“true” results for safety properties in the sense that, if a safety property is shown to hold 
in the abstract system, then it also holds in the concrete system. However, violations 
reported for the abstract system may be spurious; that is, they may not occur in the 
concrete system. 
partial coverage. Checking a portion of the state space of a system. 
pointcut. In aspect-oriented programming, a set of join points where additional code, 
called advice, is executed. 
pointer arithmetic. The use of arithmetic operations to modify a pointer’s target 
address. 
polymorphism. The ability of objects of different types to react in a type specific way to 
method calls of the same name. 
postcondition. An assertion that is evaluated with the intent of evaluating to true just 
after the execution of a function or method. In particular the predicate is evaluated even 
if the function or method includes exception control flow. Postconditions are used 
particularly in programming-by-contract. 
precondition. An assertion evaluated before a function or is executed. Preconditions are 
used particularly in programming-by-contract. 
predicate abstraction. A special case of an over-approximating data abstraction which 
maps a potentially infinite-state program into a finite-state program, via a finite set of 
predicates over the program’s variables. 
preprocessor directives. Lines of code executed by the preprocessor before the actual 
program is compiled. The preprocessor directives instruct the compiler how to treat the 
source code. 
primitive typecasting. In C and C++, casting between primitive types. 
program abstraction. Transformation of a program into another program that still has 
some key properties of the original program, but is much simpler, and therefore easier 
to analyze. In model checking, abstractions are used to reduce the size of a program’s 
state space. 
program model checking. Application of model-checking techniques to software 
systems, and in particular to the final implementation where the code itself is the target 
of the analysis. 
program slicing. Reduction of the behaviors of a program by removing control points, 
variables, and data structures that are deemed irrelevant to checking a given property. 
Programming by Contract (PbC). An extension of assertions providing specialized 
assertion types by defining standard scopes and evaluation rules for them, especially in 
the context of object-oriented programming. The main purpose of contracts is to clearly 
define responsibilities between the caller and the callee. The caller’s responsibility is to 
fulfill preconditions and the callee’s responsibility is to fulfill the postconditions. The 
goal of PbC is to help to avoid errors that are caused by ambiguity of responsibility. 
Promela (Process Meta Language). A powerful C-like specification language with a 
variety of synchronization primitives that enables construction of models of distributed 
systems. Promela is the modeling language used by the SPIN model checker. 

117 
 



Program Model Checking: A Practitioner’s Guide 

property. A precise condition that can be checked in a given state or across a number of 
states, usually expressed as a logical specification. 
property oracle. A program or a piece of code that determines whether or not a property 
holds during model checking. 
property preservation. A property is preserved under an abstraction of a program if the 
property evaluates to the same value when checked in both the abstraction and the 
program. 
random search. A search strategy that non-deterministically selects a successor to 
explore. 
reactive state machine. A state machine model of an application that reacts to 
environmental or internal stimuli. 
safety property. An assertion that nothing bad will happen during the execution of the 
program. Safety properties are used mainly to ensure that under certain conditions, an 
event will never occur. 
slicing criteria. Given a program and a set of statements of interest in the program, 
called the slicing criteria, a program slicer computes a reduced version of the program 
by removing program statements that do not affect the computation at the statements in 
the criteria. 
SLAM. A Microsoft project that combines static analysis with model checking and 
deductive reasoning. The main goal of SLAM is to check temporal safety properties of C 
programs while minimizing false positives. 
SPIN. A model checker developed by Gerard Holzmann and used for analyzing the 
logical consistency of concurrent and distributed systems. The tool’s main focus is on 
proving the correctness of process interactions. 
state (of a program). The heap, together with all thread stacks and thread execution 
states. 
state property. A property that holds for an individual state in isolation from other 
states. 
state space. The collection of all possible program states. 
state space explosion. The exponential increase in the state space with every variable or 
thread added to the system. 
state storage. A mechanism that allows a model checker to remember the previous states 
that it has visited 
static analysis. The evaluation of source code for defects without actually executing the 
code. 
stub. A program component that replaces operations invoked by the unit under test. 
symbolic execution. A technique that uses symbolic values, instead of actual data, as 
input values and represents the values of program variables as symbolic expressions. 
temporal property. A system property that relates state properties of distinct states in 
the state space to each other along possible execution paths. Also known as a dynamic 
property. 
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thread interleaving. In multi-threaded programs running on a single CPU, an 
interleaved execution order of the statements of the threads. Usually there may be more 
than one possible interleaving. The actual interleaving depends on the thread scheduler, 
and is not predetermined for each execution. Thread interleaving greatly increases the 
state space of a system. 
transition. A state change in a program. 
under-approximation. An abstraction of a concrete system in which there are fewer 
behaviors than in the concrete system. Under-approximation preserves “false” results 
for safety properties in the sense that, if a property is shown to be violated in the abstract 
system, then it is also violated in the concrete (un-abstracted) system. However, if the 
property holds in the abstract system, it does not necessarily hold in the concrete system. 
union. In C and C++, a pseudo type used for memory that can be accessed with 
alternative concrete type definitions. Unions are not supported by languages like Java. 
unit. The smallest testable part of an application. 
unit testing. A procedure used to validate that individual units of source code are 
working properly. 
untyped allocation. In C and C++, memory allocated by malloc/calloc. Untyped  
allocators do not consider types, only allocation size in bytes. 
universal environment. An environment model capable of invoking (or refusing) any 
operation to or from the unit, in any order. 
virtual machine (VM). An environment, usually a program or operating system, which 
does not physically exist but is created within another environment. 
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